

Home Search Collections Journals About Contact us My IOPscience

Lie symmetries of a generalised nonlinear Schrodinger equation: I. The symmetry group and its subgroups

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1988 J. Phys. A: Math. Gen. 21 1493 (http://iopscience.iop.org/0305-4470/21/7/013) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 31/05/2010 at 12:35

Please note that terms and conditions apply.

# Lie symmetries of a generalised non-linear Schrödinger equation: I. The symmetry group and its subgroups

L Gagnon and P Winternitz

Centre de Recherches Mathématiques, Université de Montréal, CP 6128, Succursale A, Montréal, Quebec H3C 3J7, Canada

Received 6 November 1987

Abstract. The symmetry group of the generalised non-linear Schrödinger equation  $i\psi_i + \Delta \psi = a_0 \psi + a_1 |\psi|^2 \psi + a_2 |\psi|^4 \psi$  in three space dimensions is shown to be the extended Galilei group  $\tilde{G}(3)$ , for  $a_1 a_2 \neq 0$ , and the Galilei-similitude group  $\tilde{G}^d(3)$  (including a dilation) for  $a_1 = 0$  or  $a_2 = 0$ . All Lie subgroups of  $\tilde{G}(3)$  and  $\tilde{G}^d(3)$  are found. They will be used in a subsequent paper to obtain group invariant solutions of the equation.

### 1. Introduction

This study is devoted to a group theoretical investigation of a generalised non-linear Schrödinger equation (GNLSE) in 3+1 dimensions, namely

$$\begin{split} & i\psi_t + \Delta\psi = a_0\psi + a_1|\psi|^2\psi + a_2|\psi|^4\psi \\ & \psi \equiv \psi(x, y, z, t) \in \mathbb{C} \qquad a_i \in \mathbb{R} \qquad i = 1, 2, 3 \qquad (a_1, a_2) \neq (0, 0) \end{split}$$

where  $\Delta$  is the three-dimensional Laplace operator in Euclidean 3-space and  $a_i$  are constants. This type of non-linear partial differential equation arises in many physical applications, where it describes wave propagation in non-linear and dispersive media. For instance, it can be obtained in non-linear optics [1] when the wavenumber k of an electromagnetic wave is expanded in a power series in terms of the electric field  $E(\mathbf{r}; t) = \psi(\mathbf{r}, t) \exp(i\mathbf{k} \cdot \mathbf{r})$ . Similar equations occur in the description of the electromagnetic heating of a plasma [2, 3], or in the propagation of water waves in certain regimes. Other applications concern the Landau-Ginzburg theory of phase transitions [4], or studies of various biological systems [5].

Previous studies of equation (1.1) were, to our knowledge, restricted to the onedimensional case (i.e.  $\Delta = \partial^2 / \partial_x^2$ ). The equation was shown to have solitary wave solutions [6]. Numerical studies indicate that these are not solitons, i.e. that two solitary waves of (1.1) interact inelastically [7].

The GNLSE does not belong to the class of integrable non-linear evolution equations [8, 9] even in 1+1 dimensions, still less in 3+1. Thus, no Lax pair exists and no linear techniques are available for solving this equation. Exact solitons and multisolitons are hence not to be expected.

Our aim is to apply the techniques of Lie group theory to this equation in order to obtain particular exact solutions and to study their properties. The method consists of several steps.

(i) Find the Lie group G of point transformations

$$\tilde{\mathbf{x}} = \Lambda_{g}(\mathbf{x}, \psi)$$
  $\tilde{\psi} = \Omega_{g}(\mathbf{x}, \psi)$  (1.2)

0305-4470/88/071493 + 19\$02.50 © 1988 IOP Publishing Ltd 1493

leaving the equation invariant. In other words, the transformations (1.2) are such that  $\tilde{\psi}(\tilde{x})$  is a solution, whenever  $\psi(x)$  is one.

(ii) Find all subgroups of G having orbits of codimension k ( $1 \le k \le 3$ ) in the space of independent variables  $\mathbf{x} = (x, y, z, t)$ .

(iii) Find the invariants of the above subgroups in the space of dependent and independent variables and express the dependent variables in terms of them. In the case under consideration this provides expressions of the type

$$\psi(x, y, z, t) = \alpha(x, y, z, t)\phi(\xi_1, \dots, \xi_k)$$
(1.3)

where  $\alpha$  and  $\xi_i$   $(i = 1, ..., k \le 3)$  are known functions of the independent variables x, y, z and t.

(iv) Substitute (1.3) into the original equation (1.1) and obtain a differential equation in k variables for the function  $\phi$ . Since we have  $1 \le k \le 3$  a 'symmetry reduction' is achieved.

(v) Solve the reduced equation for  $\phi(\xi_1, \ldots, \xi_k)$  and substitute back into (1.3) to obtain solutions of the original equation. The obtained solutions will be invariant under the considered subgroup of G.

The method described above is a standard one, going back to Lie[10] and is described in various contemporary books [11-14]. A new aspect is that the algorithm for finding the Lie group of point transformations leaving a system of differential equations invariant has been computerised (using symbolic languages, such as MAC-SYMA [15] or REDUCE [16]). Furthermore, methods have been developed for classifying subalgebras of Lie algebras into conjugacy classes under the action of some group of automorphisms, in particular the group of inner automorphisms [17-22]. Each conjugacy class of subgroups of G, under the action of G itself, provides a different type of group invariant solution and in particular, a different reduced equation.

We shall concentrate in this paper on subgroups with generic orbits of codimension k = 1 in spacetime (x, y, z, t). For these subgroups  $\phi(\xi)$  in (1.3) depends on one variable only and hence satisfies an ordinary differential equation. While there is no guarantee that we will be able to solve this equation analytically for all reductions, in many cases we can. The solvable cases can again be identified algorithmically. Thus, the obtained ODE may have the Painlevé property (i.e. their solutions have no singularities, other than poles, depending on the initial conditions) [23-25]. Such equations can be integrated in terms of known transcendents [23] or their generalisations [26]. A MACSYMA program has been written to help identify equations with the Painlevé property [25]. Moreover, the ODE itself may have a non-trivial symmetry group, which makes it possible to reduce the order of the ODE or even reduce it to quadratures.

The method of symmetry reduction has recently been applied in a systematic manner to relativistically invariant equations [27], in particular to the field equations of classical relativistic  $\phi^6$  field theories [28, 29]. This provided a large number of new exact solutions. The method has also been applied to the Kadomtsev-Petviashvili equation [30, 31], the Davey-Stewartson equations [32], the three-wave equations [33] and other completely integrable equations [34] in more than 1+1 dimensions. There the symmetry groups of point transformations turn out to be infinite dimensional and to have a very specific loop-group structure.

This paper is devoted to group theoretical preliminaries. In § 2 we establish that the GNLSE (1.1) is, for  $a_1a_2 \neq 0$ , invariant under the extended Galilei group  $\tilde{G}$ . For  $a_1 = 0$  (and also for  $a_1 \neq 0$ ,  $a_2 = 0$ ), independently of  $a_0$ , it is invariant under a larger

group, namely the extended Galilei group, further extended by a dilation. We shall call this group the Galilei-similitude group and denote it  $\tilde{G}^d$ . In § 3 we present a classification of subalgebras of the corresponding Lie algebras  $\tilde{g}$  and  $\tilde{g}^d$  In a subsequent paper we shall single out all classes of Lie subgroups of  $\tilde{G}$  and  $\tilde{G}^d$ , having generic orbits of codimension 1. Each one of them will be used to reduce the GNLSE to an ODE which will then be further analysed.

### 2. Symmetry group of the equation

In order to find the symmetry group of equation (1.1) we apply an algebraic approach [11]. We look for an algebra of vector fields of the form

$$V = \eta_1 \partial_x + \eta_2 \partial_y + \eta_3 \partial_z + \eta_4 \partial_t + \phi_1 \partial_{u_1} + \phi_2 \partial_{u_2}$$
(2.1)

where  $\eta_i$  and  $\phi_a$  are functions of x, y, z, t,  $u_1$ ,  $u_2$  and where  $u_1$ ,  $u_2$  are the real and imaginary parts of the solution

$$\psi(x, y, z, t) = u_1(x, y, z, t) + iu_2(x, y, z, t) \qquad u_1, u_2 \in \mathbb{R}.$$
(2.2)

The coefficients  $\eta_i$  and  $\phi_a$   $(i=1,\ldots,4; a=1,2)$  in (2.1) are determined from the requirement that the second prolongation of V should annihilate the equation on the solution set of the equation. This was implemented using a MACSYMA program [15] that provided a set of 41 determining equations; they are quite easy to solve.

The results can be summarised as follows.

(1) For  $a_1 \neq 0$ ,  $a_2 \neq 0$ , equation (1.1) is invariant only under the extended Galilei group  $\tilde{G} \equiv \tilde{G}(3)$ . A convenient basis for its Lie algebra is provided by three translations  $p_i$ , three rotations  $j_i$ , three proper Galilei transformations  $k_i$ , one time translation t and one change of phase generator m. We have

$$t = \partial_{t} + a_{0}(u_{2}\partial_{u_{1}} - u_{1}\partial_{u_{2}})$$

$$p_{1} = \partial_{x} \qquad p_{2} = \partial_{y} \qquad \bar{p_{3}} = \partial_{z}$$

$$j_{1} = z\partial_{y} - y\partial_{z} \qquad j_{2} = x\partial_{z} - z\partial_{x} \qquad j_{3} = y\partial_{x} - x\partial_{y} \qquad (2.3)$$

$$k_{1} = t\partial_{x} - \frac{1}{2}x(u_{2}\partial_{u_{1}} - u_{1}\partial_{u_{2}}) \qquad k_{2} = t\partial_{y} - \frac{1}{2}y(u_{2}\partial_{u_{1}} - u_{1}\partial_{u_{2}})$$

$$k_{3} = t\partial_{z} - \frac{1}{2}z(u_{2}\partial_{u_{1}} - u_{1}\partial_{u_{2}}) \qquad m = u_{2}\partial_{u_{1}} - u_{1}\partial_{u_{2}}.$$

(2) For  $a_1 = 0$ ,  $a_2 \neq 0$  or  $a_1 \neq 0$ ,  $a_2 = 0$  the invariance group is somewhat larger; namely we obtain the extended Galilei group, further extended by a dilation. We shall, by analogy with the relativistic case, call this group the extended Galilei-similitude group  $GS(3) \equiv \tilde{G}^d$  (in three space and one time dimensions). A basis for its Lie algebra consists of the 11 operators (2.3) and the dilation generator

$$d = 2t\partial_{t} + (x\partial_{x} + y\partial_{y} + z\partial_{z}) - \delta(u_{1}\partial_{u_{1}} + u_{2}\partial_{u_{2}}) + 2a_{0}t(u_{2}\partial_{u_{1}} - u_{1}\partial_{u_{2}})$$
(2.4)  
$$\delta = \begin{cases} \frac{1}{2} & \text{for } a_{2} \neq 0\\ 1 & \text{for } a_{1} \neq 0. \end{cases}$$

The group transformation can easily be obtained from (2.3) and (2.4), namely

$$\tilde{x}_{i} = e^{\lambda/2} [R_{ik} x_{k} - x_{i0} + v_{i} (t - t_{0})]$$

$$\tilde{t} = e^{\lambda} (t - t_{0})$$

$$\tilde{\psi} = e^{-\lambda\delta/2} \psi \exp \frac{1}{2} i [v_{i} (R_{ik} x_{k} - x_{i0}) + \frac{1}{2} v^{2} (t - t_{0}) + \alpha + 2a_{0} (t - t_{0}) (1 - e^{\lambda})]$$
(2.5)

where we have put  $x_1 \equiv x$ ,  $x_2 = y$ ,  $x_3 = z$ . The parameters  $x_{i0}$ ,  $t_0$ ,  $v_i$ ,  $\alpha$  and  $\lambda$  correspond to space translations, time translations, Galilei boosts, change of phase and dilations, respectively. The orthogonal matrix  $R_{ik}$  ( $RR^{T} = I_3$ ) corresponds to rotations.

This means that if  $\psi(x, y, z, t)$  is a solution of (1.1), then so is

$$\tilde{\psi}(\tilde{x}, \tilde{y}, \tilde{z}, \tilde{t}) = e^{-\lambda \delta/2} \psi \left( R_{ik} \left( e^{-\lambda/2} \tilde{x}_i - v_i \tilde{t} e^{-\lambda} + x_{i0} \right), e^{-\lambda} \tilde{t} + t_0 \right) \\ \times \exp \frac{1}{2} i \left[ v_i \left( e^{-\lambda/2} \tilde{x}_i - v_i \tilde{t} e^{-\lambda} \right) + \frac{1}{2} v^2 e^{-\lambda} \tilde{t} + \alpha + 2a_0 \tilde{t} \left( e^{-\lambda} - 1 \right) \right].$$
(2.6)

Discrete transformations leaving equation (1.1) invariant are:

- (i) reflections in the coordinate planes  $P_i$ 
  - $x_i \rightarrow -x_i$   $t \rightarrow t$   $\psi \rightarrow \psi$  i = 1, 2 or 3 (2.7)
- (ii) time reversal

$$T: \mathbf{r} \to \mathbf{r}, \ t \to -t, \ \psi \to \psi^*. \tag{2.8}$$

Note that the parity operator is  $P = P_1 P_2 P_3$ .

We shall denote the extended Galilei algebra with basis (2.3) by  $\tilde{g}$ , and the extended Galilei-similitude algebra with basis (2.3) and (2.4) by  $\tilde{g}^d$ . Both of these Lie algebras, as well as the corresponding Lie groups, are of considerable interest in physics. We shall present complete subalgebra classifications in both cases, going beyond the low-dimensional subalgebras needed in the present context. Subalgebras of the algebra  $\tilde{g}$  have been studied by Sorba [35]. We go well beyond his results in identifying the isomorphy classes of subalgebras of  $\tilde{g}$  and their properties. Moreover, we present a classification under the group  $\tilde{G}$  and  $\tilde{G}^d$ . The subalgebras of  $\tilde{g}^d$  are studied here for the first time.

Like all finite-dimensional Lie algebras,  $\tilde{g}$  and  $\tilde{g}^{d}$  allow Levi decompositions [36],  $g \sim S \oplus R$ , where S is semisimple and R is the radical (maximal solvable ideal). We have

$$\tilde{g} \sim \{j_1, j_2, j_3\} \oplus \{t, k_1, k_2, k_3, p_1, p_2, p_3, m\}$$

$$\tilde{g}^d \sim \{j_1, j_2, j_3\} \oplus \{d, t, k_1, k_2, k_3, p_1, p_2, p_3, m\}$$
(2.9)

i.e.  $S = \{j_1, j_2, j_3\} \sim o(3)$ .

The o(3) algebra  $\{j_1, j_2, j_3\}$  constitutes the semisimple component of each of these algebras. The remaining infinitesimal operators span the radicals. The radical of  $\tilde{g}$  is actually nilpotent and contains the Heisenberg algebra  $\{k_1, k_2, k_3, p_1, p_2, p_3, m\} \sim h(3)$ .

We shall, in our subalgebra classification, make use of different decompositions, namely

$$\tilde{g} \sim f \oplus n \qquad f \sim \{j_1, j_2, j_3, k_1, k_2, k_3\}, n \sim \{t, p_1, p_2, p_3, m\} 
\tilde{g}^d \sim \{d\} \oplus \tilde{g}.$$
(2.10)

In (2.10) n is an Abelian ideal and f is a factor algebra  $f \sim \tilde{g}/n$  which is itself a Lie algebra, isomorphic to the Euclidean Lie algebra e(3).

The commutation relations for the two algebras  $\tilde{g}$  and  $\tilde{g}^d$  are given in table 1.

The extended Galilei group  $\tilde{G}$  plays a fundamental role in non-relativistic quantum mechanics. It has been extensively studied, e.g., by Levy-Leblond [37] and Voisin [38]. A large class of equations is invariant under  $\tilde{G}$ , in particular any non-linear Schrödinger equation of the form

$$\mathrm{i}\frac{\partial\psi}{\partial t} + \Delta\psi = F(|\psi|)\psi.$$

|                       | d                     | $j_1$    | <i>j</i> <sub>2</sub> | j <sub>3</sub> | <i>k</i> <sub>1</sub> | <i>k</i> <sub>2</sub> | <i>k</i> <sub>3</sub> | $p_1$          | $p_2$          | <b>p</b> <sub>3</sub> | t        | т |
|-----------------------|-----------------------|----------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|----------------|----------------|-----------------------|----------|---|
| d                     | 0                     | 0        | 0                     | 0              | $k_1$                 | $k_2$                 | $k_3$                 | $-p_{1}$       | $-p_{2}$       | $-p_{3}$              | -2t      | 0 |
| j <sub>1</sub>        | 0                     | 0        | j <sub>3</sub>        | $-j_2$         | 0                     | $k_3$                 | $-k_2$                | 0              | $p_3$          | $-p_{2}$              | 0        | 0 |
| j <sub>2</sub>        | 0                     | $-j_3$   | 0                     | $j_1$          | $-k_3$                | 0                     | $k_1$                 | $-p_{3}$       | 0              | $p_1$                 | 0        | 0 |
| j <sub>3</sub>        | 0                     | $j_2$    | $-j_1$                | 0              | $k_2$                 | $-k_1$                | 0                     | $p_2$          | $-p_{1}$       | 0                     | 0        | 0 |
| $k_1$                 | $-k_1$                | 0        | $k_3$                 | $-k_2$         | 0                     | 0                     | 0                     | $\frac{1}{2}m$ | 0              | 0                     | $-p_{1}$ | 0 |
| $k_2$                 | $-k_2$                | $-k_3$   | 0                     | $k_1$          | 0                     | 0                     | 0                     | 0              | $\frac{1}{2}m$ | 0                     | $-p_{2}$ | 0 |
| k3                    | $-k_3$                | $k_2$    | $-k_1$                | 0              | 0                     | 0                     | 0                     | 0              | 0              | $\frac{1}{2}m$        | $-p_{3}$ | 0 |
| $p_1$                 | $p_1$                 | 0        | $p_3$                 | $-p_{2}$       | $-\frac{1}{2}m$       | 0                     | 0                     | 0              | 0              | 0                     | 0        | 0 |
| $p_2$                 | $p_2$                 | $-p_{3}$ | 0                     | $p_{1}$        | 0                     | $-\frac{1}{2}m$       | 0                     | 0              | 0              | 0                     | 0        | 0 |
| <b>p</b> <sub>3</sub> | <i>P</i> <sub>3</sub> | $p_2$    | $-p_{1}$              | 0              | 0                     | 0                     | $-\frac{1}{2}m$       | 0              | 0              | 0                     | 0        | 0 |
| t                     | 2 <i>t</i>            | 0        | 0                     | 0              | $p_1$                 | $p_2$                 | $p_3$                 | 0              | 0              | 0                     | 0        | 0 |
| т                     | 0                     | 0        | 0                     | 0              | 0                     | 0                     | 0                     | 0              | 0              | 0                     | 0        | 0 |

**Table 1.** Commutation relations for  $\tilde{g}^d(3)$  and  $\tilde{g}(3)$ .

Similarly, the group  $\tilde{G}^d$  is pertinent in the study of scaling phenomena in any non-relativistic quantum theory.

In the classical limit,  $\hbar \to 0$ , the extended Galilei algebra  $\tilde{g}$  and the extended Galilei-similitude algebra  $\tilde{g}^d$  contract to a direct sum of the corresponding non-extended algebras g and  $g^d$  with a one-dimensional algebra  $\{m\}$ . Their subalgebras and the corresponding subgroups of the non-extended groups G and G<sup>d</sup> will be of use, e.g., in the study of classical non-relativistic integrable systems. A classification of the subalgebras of g and  $g^d$  is presented elsewhere [39].

#### 3. The subalgebra classification

We shall classify the subalgebras of the extended Galilei algebra  $\tilde{g}$  into conjugacy classes under the action of the connected component of the extended Galilei group  $\tilde{G}_0 \equiv G_0(3)$ , under the group  $\tilde{G} \equiv \tilde{G}(3)$  that includes parity *P* and time reversal *T* and also under the connected component of the extended Galilei-similitude group  $\tilde{G}_0^d$  and under  $\tilde{G}^d = GS(3)$ , including *P* and *T*. The subalgebras of the extended Galilei-similitude algebra  $\tilde{g}^d$  are classified into conjugacy classes under the action of  $GS_0(3)$  and GS(3).

The method to be used for  $\tilde{g}$  was developed [17] in connection with a classification of subalgebras of the Poincaré algebra p(3, 1). The one for  $\tilde{g}^d$  was first presented in connection with the relativistic similitude algebra sim(3, 1) [18]. They have been applied to find all closed connected subgroups of such fundamental groups of physics as the Poincaré [17] and similitude groups [18], the two de Sitter groups [19, 20], the optical group [22] and the Schrödinger group in 1+1 and 2+1 dimensions [21, 22].

### 3.1. Subalgebras of the extended Galilei algebra $\tilde{g}$

We make use of the semidirect sum decomposition (2.10). The classification procedure can be formulated as an algorithm, consisting of several steps. Consider a Lie algebra

$$l = f \oplus n$$
 (n = ideal in l).

(1) Classify all subalgebras of the algebra f into conjugacy classes under the action of the group F = expf. Choose a representative  $f_i$  of each conjugacy class of

subalgebras in such a manner that the normaliser  $nor_f f_i$  of  $f_i$  in f is also in the list. We recall here the definition of the normaliser of a subalgebra in a Lie algebra:

$$\operatorname{nor}_{f} f_{i} = \{ \mathbf{x} \in f | [\mathbf{x}, f_{i}] \subseteq f_{i} \}.$$

$$(3.1)$$

Obviously we have

$$f_i \subseteq \operatorname{nor}_{\mathbf{f}} f_i \subseteq \mathbf{f}.$$

The trivial subalgebras  $f_0 = f$  and  $f_p = \{\emptyset\}$  must be included in the list.

In the case under consideration we have  $f \sim e(3)$ . The subalgebras of the Euclidean algebra e(3) have already been classified [19] and we reproduce the results in table 2. For future use we give the normaliser of each subalgebra  $f_i$  both in f and in  $\tilde{g}$  (see column 5).

Table 2. Representatives of conjugacy classes of subalgebras of the Euclidean algebra  $f\sim e(3).$ 

|           |              |                        |                                                  |                                      | F                        | lange of | f paramet                  | ers   |
|-----------|--------------|------------------------|--------------------------------------------------|--------------------------------------|--------------------------|----------|----------------------------|-------|
| Dimension | Notation     | Basis                  | $\operatorname{nor}_{\mathbf{f}} f_{\mathbf{i}}$ | $\operatorname{nor}_{\tilde{g}} f_t$ | $\mathbf{\tilde{G}}_{0}$ | Ğ        | $\mathbf{\hat{G}}_{0}^{d}$ | Ĝ₫    |
| 6         | $f_0$        | j, k                   | $f_0$                                            | $\{f_0, m\}$                         |                          |          |                            |       |
| 4         | $f_1$        | $j_3, \boldsymbol{k}$  | $f_1$                                            | $\{f_1, m\}$                         |                          |          |                            |       |
| 3         | $f_2$        | Ĵ                      | $f_2$                                            | $\{f_2, t, m\}$                      |                          |          |                            |       |
| 3         | $f_3$        | $j_3, k_1, k_2$        | $f_1$                                            | $\{f_1, p_3, m\}$                    |                          |          |                            |       |
| 3         | $f_4$        | k                      | $f_0$                                            | $\{f_0, m\}$                         |                          |          |                            |       |
| 3         | $f_5^a$      | $j_3 + ak_3, k_1, k_2$ | $f_1$                                            | $\{f_1, m\}$                         | <i>a</i> ≠ 0             | a > 0    | $a = \pm 1$                | a =   |
| 2         | $f_6$        | $j_3, k_3$             | $f_6$                                            | $\{f_6, m\}$                         |                          |          |                            |       |
| 2         | $f_7$        | $k_1, k_2$             | $f_1$                                            | $\{f_1, p_3, m\}$                    |                          |          |                            |       |
| 1         | $f_8$        | $j_3$                  | $f_6$                                            | $\{f_1, p_3, t, m\}$                 |                          |          |                            |       |
| 1         | $f_9$        | $k_3$                  | $f_1$                                            | $\{f_1, p_1, p_2, m\}$               |                          |          |                            |       |
| 1         | $f_{10}^{a}$ | $j_3 + ak_3$           | $f_6$                                            | $\{f_6, m\}$                         | $a \neq 0$               | a > 0    | $a = \pm 1$                | a = 1 |
| 0         | $f_{11}$     | Ø                      | $f_0$                                            | ĝ(3)                                 |                          |          |                            |       |

Every subalgebra of f is conjugated to precisely one algebra in table 2. Which classification group is used only influences the range of parameters introduced in column 3 (see column 6).

(2) For each subalgebra  $f_i \subset f$  find all invariant subspaces  $n_{i,\alpha} \subseteq n$  ( $[f_i, n_{i,\alpha}] \subseteq n_{i,\alpha}$ ) that are also subalgebras of n. Since in the case under consideration the ideal n is Abelian, every subspace of n is a subalgebra. Classify the invariant subspaces for each  $f_i$  into conjugacy classes under the action of Nor<sub>G</sub>  $f_i$ , where

$$\operatorname{Nor}_{\mathbf{G}} f_{i} = \{ \mathbf{g} \in \mathbf{G} \, \big| \, \mathbf{g} f_{i} \mathbf{g}^{-1} \subseteq f_{i} \}$$

$$(3.2)$$

and G is the classifying group under consideration. Choose a representative  $n_{i,\alpha}$  of each conjugacy class. A list of representatives of all G conjugacy classes of *splitting* subalgebras of l is obtained by taking the set of all algebras that are the algebraic sums of the spaces  $f_i$  and  $n_{i,\alpha}$ :

$$f_i + n_{i,\alpha} \qquad \forall i, \forall \alpha. \tag{3.3}$$

(3) Find all *non-splitting* subalgebras of l. These are subalgebras containing, in any basis, at least one basis element not contained in the ideal n, nor in the factor algebra f (not even after conjugation by the classifying group). To obtain all non-splitting subalgebras of a Lie algebra  $l = f \oplus n$  we choose a basis for n, say  $\{X_1, \ldots, X_p\}$ .

We then run through the list of all splitting subalgebras  $\{f_i + n_{i,\alpha}\}$ . For each of them we have a basis

$$f_i = \{B_1, \ldots, B_r\}$$
  $n_{i,\alpha} = \{X_1, \ldots, X_p\}.$  (3.4)

All non-splitting subalgebras of l, related to the splitting subalgebra (3.4), will have bases in the form

$$\begin{cases} B_a + \sum_{j=1}^m C_{aj} Y_j, X_i \end{cases} \qquad a = 1, \dots, r \qquad i = 1, \dots, p$$
  

$$Y_j \in n/n_{i,\alpha} \qquad j = 1, \dots, m \qquad m+p = \dim n.$$
(3.5)

The constants  $C_{aj} \in \mathbb{R}$  are subject to the condition that (3.5) must be the basis of a Lie algebra. The classification of all non-splitting subalgebras amounts to a classification of all the algebras (3.5) under the action of the group  $\operatorname{Nor}_{G}(f_{i} + n_{i,\alpha}) \oplus \mathbb{N}$  and to the choice of a representative of each conjugacy class (where  $N = \exp n$ ).

In cohomological terms, the condition that the elements in (3.5) form the basis of a Lie algebra means that the coefficients  $C_{aj}$  form 1-cocycles. Those that can be eliminated by transformations in the invariant subgroup N form 1-coboundaries. If all 1-cocycles are 1-coboundaries then the subalgebra is a splitting one.

Combining together the representative lists of splitting and non-splitting subalgebras of l, we obtain a normalised representative list of all subalgebras of l (the normaliser of every algebra in the list is also in the list).

The results of the classification of the subalgebras of the extended Galilei algebra  $\tilde{g}$  are given in table 3. In column 2 we give some information on the isomorphy class of the subalgebra. For subalgebras of dimensions  $d \le 5$  and nilpotent algebras of dimension d = 6 a complete classification of isomorphy classes exists [40-44]. For these algebras we present the isomorphy class in column 2, following the notations of [44]. For d = 7, ..., 11 and d = 6 non-nilpotent, we give whatever information is available in column 2. In particular, if a subalgebra is decomposable, then its indecomposable components are identified. Subalgebras containing the three rotations j = $\{j_1, j_2, j_3\}$  have Levi decompositions in which the semisimple subalgebra is o(3), and all other basis elements span a nilpotent ideal (the radical, which is also the nilradical). Algebras containing one element involving a rotation  $(j_3, j_3 + at, j_3 + ak_3, j_3 + ap_3, a_3 + ap_3)$  $j_3 + am$ , or  $j_3 + ak_3 + bt$ ) are solvable, but not nilpotent. The bases are presented in column 3 in such a way that the nilradical (NR), i.e. the maximal nilpotent ideal, is obtained by simply omitting the basis element involving  $j_3$ . Some information on the nilradicals of the solvable subalgebras is also given in column 2. The basis elements to the right of the semicolon in column 3 span the derived algebra of the subalgebra.

The normaliser of each algebra in the extended Galilei algebra  $\tilde{g}$ , and extended Galilei-similitude algebra  $\tilde{g}^d$ , are presented in columns 4 and 5, respectively. The subalgebras are denoted  $\tilde{g}_{i,k}$ , where *i* denotes the dimension and *k* labels different subalgebra classes of the same dimension. Many subalgebras depend on parameters  $a, b, \ldots \in \mathbb{R}$ . Their range is indicated in column 6, for conjugacy considered under the proper extended Galilei group  $\tilde{G}_0$ , the group  $\tilde{G}_0^d$  and also the group  $\tilde{G}^d$ , including *P* and *T*.

# 3.2. Subalgebras of the extended Galilei-similitude algebra $\tilde{g}^d$

We apply a somewhat modified version of the classification procedure used above [18].

**Table 3.** Representatives of conjugacy classes of subalgebras of the extended Galilei algebra  $\tilde{g} = \tilde{g}(3)$ . The classification group is specified in column 6 and only influences the range of parameters (if any). These are also representatives of  $\tilde{G}_0^d$  or  $\tilde{G}^d$  conjugacy classes of subalgebras of  $\tilde{g}^d$  not involving dilations. For  $\tilde{g}'_4$  and  $\tilde{g}''_4$  see table 4.

|                          |                                         |                                                                           |                         |                                       |                | Range of       | parameters          | 5              |
|--------------------------|-----------------------------------------|---------------------------------------------------------------------------|-------------------------|---------------------------------------|----------------|----------------|---------------------|----------------|
| Number                   | Isomorphism class<br>and comments       | Basis                                                                     | nor <sub>ĝ</sub>        | nor <sub>g</sub> d                    | Ĝ <sub>0</sub> | Ĝ              | Ĝ <sup>d</sup>      | Ğď             |
| ğ11,1                    | ğ(3)                                    | t; <b>j</b> , <b>k</b> , <b>p</b> , m                                     | <i>§</i> 11,1           | $\tilde{g}_{12,1}^{d}$                |                |                |                     |                |
| <b>§</b> 10,1            |                                         | ; <b>j</b> , <b>k</b> , <b>p</b> , m                                      | <i>ğ</i> 11,1           | $\tilde{g}^{d}_{12,1}$                |                |                |                     |                |
| ĝ <sub>9,1</sub>         |                                         | $j_3, t; k_1, k_2, p, m$                                                  | $\hat{g}_{9,1}$         | $\tilde{g}_{10,2}^{d}$                |                |                |                     |                |
| <i>§</i> 8,1             | e(3)⊕2L(1,1)                            | $\{; j, p\} \oplus \{i\} \oplus \{m\}$                                    | $\tilde{g}_{8,1}$       | $\hat{g}_{9,2}^{d}$                   |                |                |                     |                |
| <b>ğ</b> 8,2             | $\tilde{g}_{7,15} \oplus L(1,1)$        | $\{j_3, t; k_1, k_2, p_1, p_2, m\} \oplus \{p_3;\}$                       | <i>8</i> 9,1            | $\hat{g}_{10,2}^{d}$                  |                |                |                     |                |
| <b>8</b> 8,3             | nilpotent                               | t, k; p, m                                                                | \$11,1                  | <b>ğ</b> <sup>d</sup> <sub>10,2</sub> |                |                |                     |                |
| <b>8</b> 8.4             | solv, NR = $L(6, 14; 1) \oplus L(1, 1)$ | $j_3 + ak_3, t; k_1, k_2, p, m$                                           | ĝ <sub>9,1</sub>        | ĝ <sup>d</sup><br>9,1                 | <i>a</i> ≠ 0   | a > 0          | $a = \pm 1$         | a = 1          |
| 88.5                     | solv, NR = $\tilde{g}_{7,11}$           | $j_3, k_3 + at, p_3; k_1, k_2, p_1, p_2, m$                               | <b>ğ</b> 9,1            | $\tilde{g}_{9,1}^{d}$                 | a > 0          | a > 0          | a = 1               | a = 1          |
| <b>8</b> 8,6             | solv, NR = $\tilde{g}_{7,11}$           | $j_3 + bk_3, k_3 + at; k_1, k_2, p, m$                                    | <b>8</b> 9,1            | $\tilde{g}_{9,1}^{d}$                 | a > 0<br>b ≠ 0 | a > 0<br>b > 0 | a = 1<br>$b \neq 0$ | a = 1<br>b > 0 |
| ~                        |                                         | the second second                                                         | -                       | $\tilde{g}_{10,2}^{d}$                | $b \neq 0$     | 0 > 0          | $b \neq 0$          | 0/0            |
| <u>8</u> 8,7<br>88,8     | solv, $NR = h(3)$<br>solv, $NR = h(3)$  | $j_3, k_3, p_3; p_1, p_2, k_1, k_2, m$<br>$j_3 + at, k_3; k_1, k_2, p, m$ | 89,1<br>89,1            | $g_{10,2}$<br>$\tilde{g}_{9,1}^{d}$   | a > 0          | <i>a</i> > 0   | <i>a</i> = 1        | a = 1          |
| $\tilde{g}_{7,1}$        | $L(3, 4; 0) \oplus L(4, 1)$             | $\{j_3; p_1, p_2\} \oplus \{t, k_3; p_3, m\}$                             | 87,1                    | $\hat{g}_{8,15}^{d}$                  |                |                |                     |                |
| 87.2                     | L(6, 14; 1)⊕L(1, 1)                     | $\{t, k_1, k_2; p_1, p_2, m\} \oplus \{p_3;\}$                            | ĝ <sub>9,1</sub>        | $\tilde{g}_{10,2}^{d}$                |                |                |                     |                |
| ĝ7,3                     | $e(3) \oplus L(1, 1)$                   | $\{; j, k\} \oplus \{m;\}$                                                | <b>g</b> 7.3            | $\hat{g}_{8,9}^{d}$                   |                |                |                     |                |
| 87.4                     | $e(3) \oplus L(1,1)$                    | $\{; j, p\} \oplus \{m;\}$                                                | $\tilde{g}_{8,1}$       | $\bar{g}_{8,10}^{d}$                  |                |                |                     |                |
| 87.5                     | $e(3) \oplus L(1,1)$                    | $\{; j, p\} \oplus \{t;\}$                                                | $\tilde{g}_{8,1}$       | $\hat{g}_{9,2}^{d}$                   |                |                |                     |                |
| <b>§</b> 7,6             | $e(3) \oplus L(1,1)$                    | $\{; j, p\} \oplus \{t + am\}$                                            | $\tilde{g}_{8,1}$       | $\tilde{g}_{8,1}^{d}$                 | a ≠ 0          | a ≠ 0          | $a = \pm 1$         | $a = \pm 1$    |
| <b>ğ</b> 7,7             | $\hat{g}_{6,15} \oplus L(1,1)$          | $\{j_3; k_1, k_2; p_1, p_2, m\} \oplus \{k_3;\}$                          | <b>ğ</b> 8,7            | 89,6                                  |                |                |                     |                |
|                          | ~ ĝ <sub>7.7</sub>                      | $\{j_3; k_1, k_2; p_1, p_2, m\} \oplus \{p_3;\}$                          | 89.1                    | 8 <sup>d</sup> 10,2                   |                |                |                     |                |
| 87.9                     | $\tilde{g}_{6,18} \oplus L(1,1)$        | ${j_3+at; k_1, k_2; p_1, p_2, m} \oplus {p_3;}$                           |                         | <b>Ž</b> <sup>d</sup> <sub>9,1</sub>  | a > 0          | a > 0          | a = 1               | a = 1          |
| 87,10                    | nilpotent, h(3)                         | k, p; m                                                                   | ĝ.1.1                   | 812.1                                 |                |                |                     |                |
| 87,11                    | nilpotent                               | $k_3 + at, k_1, k_2, p_3; p_1, p_2, m$                                    | ĝ <sub>9,1</sub>        | $\tilde{g}_{9,1}^{d}$                 | a > 0          | a > 0          | a = 1               | a = 1          |
| 87,12                    | solv, NR = $L(5, 4) \oplus L(1, 1)$     | $j_3 + ak_3, p_3; k_1, k_2, p_1, p_2, m$                                  | <b>g</b> 9,1            | 89,1                                  | <i>a</i> ≠ 0   | <i>a</i> > 0   | $a = \pm 1$         | <i>a</i> = 1   |
| 87.13 ·                  | ~ §7.12                                 | $j_3 + ap_3, k_3; k_1 k_2, p_1, p_2, m$                                   | <b>8</b> 8.7            | $\tilde{g}^{d}_{8,7}$                 | a ≠ 0          | a > 0          | $a = \pm 1$         | <i>a</i> = 1   |
| 87,14                    | solv, NR =                              | $j_3 + bk_3 + at, p_3; k_1, k_2, p_1, p_2, m$                             |                         | $\tilde{g}_{9,1}^{d}$                 | a > 0          | a > 0          | a = 1               | a = 1          |
|                          | $L(5,4) \oplus L(1,1)$                  |                                                                           |                         |                                       | b≠0            | b > 0          | b≠0                 | b > 0          |
| <b>g</b> <sub>7,15</sub> | solv, NR =<br>L(6, 14; 1)               | $j_3, t; k_1, k_2, p_1, p_2, m$                                           | $	ilde{g}_{8,2}$        | <b>g</b> <sup>d</sup> 9,5             |                |                |                     |                |
| §7.16                    | ~ g <sub>7.15</sub>                     | $j_3, k_3 + at; k_1, k_2, p_1, p_2, m$                                    | <b>g</b> 8.5            | $\tilde{g}_{8,5}^{d}$                 | a > 0          | a > 0          | a = 1               | a = 1          |
|                          | ~ ĝ <sub>7.15</sub>                     | $j_3 + ap_3, t; k_1, k_2, p_1, p_2, m$                                    | <b>§</b> 8.2            | 88.2                                  | $a \neq 0$     | a > 0          | $a = \pm 1$         | a = 1          |
|                          | ~ 87,15                                 | $j_3 + bp_3, k_3 + at; k_1, k_2, p_1, p_2, m$                             |                         | $\tilde{g}_{8,5}^{d}$                 | a > 0          | a > 0          | a = 1               | a = 1          |
|                          |                                         |                                                                           |                         |                                       | $b \neq 0$     | <i>b</i> ≠ 0   | $b \neq 0$          | $b \neq 0$     |
| g6,1                     | $L(3,4;0) \oplus 3L(1,1)$               | $\{j_3; p_1, p_2\} \oplus \{t_i\} \oplus \{p_3;\} \oplus \{m_i\}$         | <b>ğ</b> 7,1            | $\hat{g}_{8,15}^{d}$                  |                |                |                     |                |
| <b>ĝ</b> 6,2             | $L(3, 4; 0) \oplus L(3, 1)$             | $\{j_3; k_1, k_2\} \oplus \{k_3, p_3; m\}$                                | <b>g</b> <sub>6,2</sub> | $\tilde{g}_{7,28}^{d}$                |                |                |                     |                |
| <b>8</b> 6,3             | $L(3, 4; 0) \oplus L(3, 1)$             | $\{j_3; p_1, p_2\} \oplus \{k_3, p_3; m\}$                                | <i>8</i> 7,1            | <b>g</b> <sup>d</sup> 8,15            |                |                |                     |                |
| 86,4                     | $L(3, 4; 0) \oplus L(3, 1)$             | $\{j_3; p_1, p_2\} \oplus \{k_3 + at, p_3; m\}$                           | <b>8</b> 7,1            | 87.1                                  | a > 0          | a > 0          | a = 1               | <i>a</i> = 1   |
| ĝ <sub>6,5</sub>         | $L(3, 4: 0) \oplus L(3, 1)$             | $\{j_3; k_1 + ap_2, k_2 - ap_1\}$<br>$\oplus \{k_3, p_3; m\}$             | <b>ğ</b> 6.5            | <b>8</b> 65                           | a > 0          | a > 0          | <i>a</i> = 1        | <i>a</i> = 1   |
| <b>ğ</b> 6,6             | $L(4, 1) \oplus 2L(1, 1)$               | $\{t, k_3; p_3, m\} \oplus \{p_1;\} \oplus \{p_2;\}$                      | 89.1                    | $\tilde{g}_{10,2}^{d}$                |                |                |                     |                |
| <i>8</i> 6,7             | $L(5,5) \oplus L(1,1)$                  | $\{k_3 + at, k_2, p_3; p_2, m\} \oplus \{p_1;\}$                          | ĝ8,3                    | 88,3                                  | a > 0          | a > 0          | a = 1               | a = 1          |
| \$6.8                    | $L(5, 4) \oplus L(1, 1)$                | $\{k_1, k_2, p_1, p_2; m\} \oplus \{p_3;\}$                               | 89,1                    | 8 10.2                                |                |                |                     |                |
| 86,9                     | $L(5, 4) \oplus L(1, 1)$                | $\{k_1, k_2, p_1, p_2; m\} \oplus \{k_3;\}$                               | <b>ã</b> 8,7            | ĝ <sup>d</sup><br>89,6                |                |                |                     |                |
| <b>ğ</b> 6,10            | $L(5,4) \oplus L(1,1)$                  | $\{k_1 + ap_3, k_2, p_1, p_2; m\}$<br>$\oplus \{k_3 + ap_1\}$             | <b>ğ</b> 7,10           | <b>g</b> <sup>d</sup> 7,10            | a > 0          | a > 0          | <i>a</i> = 1        | <i>a</i> = 1   |
| 86,11                    | L(6, 14; 1)                             | $t, k_1, k_2; p_1, p_2, m$                                                | $\tilde{g}_{8,2}$       | 895                                   |                |                |                     |                |
| 86,12                    | L(6, 14; 1)                             | $k_3 + at, k_1, k_2; p_1, p_2, m$                                         | ĝ <sub>8,7</sub>        | 89,5<br>88,7                          | a > 0          | $a \ge 0$      | a = 1               | a = 1          |
| 86,13                    | L(6, 14; 1)                             | $k_3 + at, k_1 + bp_3, k_2; p_1, p_2, m$                                  | 87.11                   | <b>g</b> <sup>d</sup> 7,11            | a > 0          | a > 0          | a = 1               | a = 1          |
|                          |                                         |                                                                           |                         |                                       | b > 0          | b > 0          | b > 0               | b > 0          |
| <b>8</b> 6,14            | L(6, 14; 1)                             | $t, k_1 + ap_3, k_2; p_1, p_2, m$                                         | <b>õ</b> 7,2            | $\tilde{g}_{7,2}^{d}$                 | a > 0          | a > 0          | a = 1               | a = 1          |
| 86,15                    | solv, NR = $L(5, 4)$                    | $j_3; k_1, k_2, p_1, p_2, m$                                              | 89,1                    | <b>g</b> <sup>d</sup> <sub>10,2</sub> |                |                | -                   |                |

|                                | Isomorphism class                                            |                                                                                                                                                                     |                                |                                                          |                             | Range of                    |                                     |                          |
|--------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------|-----------------------------|-----------------------------|-------------------------------------|--------------------------|
| Number                         | and comments                                                 | Basis                                                                                                                                                               | nor <sub>ĝ</sub>               | nor <sub>ğ</sub> d                                       | $\mathbf{\tilde{G}}_{0}$    | Ĝ                           | $\mathbf{\tilde{G}}_0^{\mathbf{d}}$ | $\mathbf{\tilde{G}}^{d}$ |
|                                | ~ Ž6,15                                                      | $j_3 + ap_3; k_1, k_2, p_1, p_2, m$                                                                                                                                 | <i>§</i> 9,1                   | 8 <sup>d</sup><br>89,1                                   | a ≠ 0                       | a > 0                       | a = ±1                              | a = 1                    |
|                                | - \$6,15                                                     | $j_3 + ak_3$ ; $k_1, k_2, p_1, p_2, m$                                                                                                                              | 88.7                           | 88.7                                                     | a ≠ 0                       | a > 0                       | $a = \pm 1$                         | a = 1                    |
| 36,18                          | solv, NR = L(5, 4)                                           | $j_3 + at; k_1, k_2, p_1, p_2, m$                                                                                                                                   | 88.2                           | gd,2                                                     | a > 0                       | a > 0                       | a = 1                               | a = 1                    |
|                                | ~ §6,18                                                      | $k_3 + at + bj_3; k_1, k_2, p_1, p_2, m$                                                                                                                            | 88,5                           | 88,5                                                     | a > 0                       | a > 0                       | <i>a</i> == 1                       | a = 1                    |
| 56,19                          | 56,18                                                        | <i>x</i> <sub>3</sub> + <i>a</i> + <i>o</i> <sub>3</sub> , <i>x</i> <sub>1</sub> , <i>x</i> <sub>2</sub> , <i>p</i> <sub>1</sub> , <i>p</i> <sub>2</sub> , <i>m</i> | 88,5                           | 08,5                                                     | $b \neq 0$                  | b ≠ 0                       | <b>b</b> ≠ 0                        | b ≠ 0                    |
| <b>8</b> 6,20                  | solv, NR = $L(3, 1) \oplus 2L(1, 1)$                         | $j_3 + bt, k_3 + at, p_3; p_1, p_2, m$                                                                                                                              | <b>ğ</b> 7,1                   | 8 <sup>d</sup> 7,1                                       | a > 0<br>b ≠ 0              | a > 0<br>b > 0              | $a \approx 1$<br>$b \neq 0$         | a = 1<br>b > 0           |
| <b>3</b> 6,21 ~                | - ĝ <sub>6,20</sub>                                          | $j_3 + bt, k_3, p_3; p_1 p_2, m$                                                                                                                                    | 87.1                           | $\tilde{g}_{7,1}^{d}$                                    | b > 0                       | b > 0                       | b == 1                              | b = 1                    |
| 86,22                          | solv, NR = $5L(1, 1)$                                        | $j_3 + ak_3, t; p, m$                                                                                                                                               | <b>ğ</b> 7,1                   | $\hat{g}_{7,1}^{d}$                                      | a ≠ 0                       | a > 0                       | $a = \pm 1$                         | a = 1                    |
| 36,23                          | e(3)                                                         | ; j, k                                                                                                                                                              | 87.3                           | ĝ <sup>d</sup> 8.9                                       |                             |                             |                                     | - 1                      |
| 36,23<br>36,24                 | e(3)                                                         | ; j, p                                                                                                                                                              | 88.1                           | 88,10                                                    |                             |                             |                                     |                          |
|                                |                                                              |                                                                                                                                                                     |                                |                                                          |                             |                             |                                     |                          |
| 85,1<br>85,2                   | 5L(1, 1)<br>L(3, 1) $\oplus$ 2L(1, 1)                        | $ \{p_1;\} \oplus \{p_2;\} \oplus \{p_3;\} \oplus \{r_i\} \oplus \{m_i\} \\ \{k_1 + ap_2, k_2 - ap_1; m\} \\ \oplus \{k_2 + ap_1;\} \oplus \{p_3;\} $               | <b>g</b> 11,1<br><b>g</b> 7,10 | $\tilde{g}_{12,1}^{d}$<br>$\tilde{g}_{7,10}^{d}$         | <i>a</i> > 0                | <b>a</b> > 0                | a == 1                              | a = 1                    |
| <b>8</b> 5,3                   | $L(3,1) \oplus 2L(1,1)$                                      | $\{k_3 + ap_2, k_2 + bp_1 + cp_2 - ap_3; m\}$                                                                                                                       | ð                              | $\hat{g}_{7,10}^{d}$                                     | a > 0                       | a > 0                       | a == 1                              | a = 1                    |
| 55,3                           | B(0, 1) @ 2B(1, 1)                                           | $\oplus \{k_1 + bp_2; k_2 + bp_1 + cp_2 - ap_3;\}$                                                                                                                  | 87,10                          | 87,10                                                    | <b>b</b> ≥0                 | $b \ge 0$                   | b ≥ 0                               | $b \ge 0$                |
|                                |                                                              |                                                                                                                                                                     |                                |                                                          | c∈R                         | c∈ℝ                         | $c \in \mathbb{R}$                  | c∈R                      |
| <i>z</i>                       | $I(2,1) \oplus 2I(1,1)$                                      | $ \bigoplus \{k_2 + bp_1 + cp_2 + ap_3\} $                                                                                                                          |                                | æ <sup>d</sup>                                           |                             |                             |                                     |                          |
| <b>8</b> 5,4                   | $L(3, 1) \oplus 2L(1, 1)$                                    | $\{k_3, p_3; m\} \oplus \{k_1;\} \oplus \{k_2 + ap_2;\}$                                                                                                            | <b>8</b> 7,10                  | 87,10                                                    | $a \neq 0$                  | a > 0                       | $a = \pm 1$                         | a = 1                    |
| \$ 5.5                         | $L(3, 1) \oplus 2L(1, 1)$                                    | $\{k_3, p_3; m\} \oplus \{k_1;\} \oplus \{k_2;\}$                                                                                                                   | <b>g</b> <sub>8,7</sub>        | gd,2                                                     |                             |                             |                                     |                          |
| \$5,6                          | $L(3,1) \oplus 2L(1,1)$                                      | $\{k_1, p_1; m\} \oplus \{k_2;\} \oplus \{p_3;\}$                                                                                                                   | 87,10                          | 87,10                                                    |                             |                             |                                     |                          |
| §5.7                           | $L(3,1) \oplus 2L(1,1)$                                      | $\{k_3, p_3; m\} \oplus \{p_1;\} \oplus \{p_2;\}$                                                                                                                   | 89,1                           | $\tilde{g}_{10,2}^{d}$                                   |                             |                             |                                     |                          |
| 35.8                           | $L(3,1) \oplus 2L(1,1)$                                      | $\{k_3 + a_1, p_3; m\} \oplus \{p_1;\} \oplus \{p_2;\}$                                                                                                             | 89,1                           | $\tilde{g}_{9,1}^{d}$                                    | a > 0                       | a > 0                       | a = 1                               | a = 1                    |
| \$5,9                          | $L(3, 4; 0) \oplus 2L(1, 1)$                                 | $\{j_3; k_1, k_2\} \oplus \{p_3;\} \oplus \{m\}$                                                                                                                    | <i>ã</i> 6,2                   | 87,28                                                    |                             |                             |                                     |                          |
| 5,10                           | $L(3, 4; 0) \oplus 2L(1, 1)$                                 | $\{j_3; k_1, k_2\} \oplus \{k_3;\} \oplus \{m;\}$                                                                                                                   | 86.2                           | 87.28                                                    |                             |                             |                                     |                          |
| <b>8</b> 5,11                  | $L(3, 4; 0) \oplus 2L(1, 1)$                                 | $\{j_3; k_1, k_2\} \oplus \{k_3 + ap_3;\} \oplus \{m_i\}$                                                                                                           | \$6,2                          | 8 <sup>d</sup> ,2                                        | a ≠ 0                       | a > 0                       | $a = \pm 1$                         | a = 1                    |
| <b>9</b> 5,12                  | $L(3, 4; 0) \oplus 2L(1, 1)$                                 | $\{j_3; p_1, p_2\} \oplus \{k_3;\} \oplus \{m_i\}$                                                                                                                  | 86.3                           | $\tilde{g}_{7,29}^{d}$                                   |                             |                             |                                     |                          |
| <b>8</b> 5,13                  | $L(3, 4; 0) \oplus 2L(1, 1)$                                 | $\{j_3; p_1, p_2\} \oplus \{k_3 + at\} \oplus \{m\}$                                                                                                                | 86,4                           | 8 <sup>d</sup> ,4                                        | a > 0                       | a > 0                       | $a \approx 1$                       | <i>a</i> = 1             |
| ĝ 5,14                         | $L(3, 4; 0) \oplus 2L(1, 1)$                                 | $\{j_3; p_1, p_2\} \oplus \{t_i\} \oplus \{m_i\}$                                                                                                                   | <b>g</b> <sub>6,1</sub>        | 80,4<br>87,19                                            |                             |                             |                                     |                          |
| 85,14<br>85,15                 | $L(3, 4; 0) \oplus 2L(1, 1)$                                 | $\{j_3; p_1, p_2\} \oplus \{p_3;\} \oplus \{m_i\}$                                                                                                                  | 87.1                           | 8 <sup>d</sup><br>8 <sup>d</sup><br>8,15                 |                             |                             |                                     |                          |
| -                              | $L(3, 4; 0) \oplus 2L(1, 1)$                                 | $\{j_3 + at; p_1, p_2\} \oplus \{p_3, \} \oplus \{m, \}$                                                                                                            | -                              | 88,15<br>8 <sup>d</sup><br>7,1                           | a > 0                       | a > 0                       | a == 1                              | a = 1                    |
| ĝ5,16                          | $L(3, 4; 0) \oplus 2L(1, 1)$<br>$L(3, 4; 0) \oplus 2L(1, 1)$ |                                                                                                                                                                     | 87.1                           | 87,1<br>#d                                               | a ≠ 0                       | a > 0                       | $a = \pm 1$                         | a = 1                    |
| 85,17                          |                                                              | $\{j_3 + ap_3; p_1, p_2\} \oplus \{t_i\} \oplus \{m_i\}$                                                                                                            | <b>g</b> <sub>6,1</sub>        | g 6,1                                                    |                             |                             |                                     |                          |
| g 5,18                         | $L(3, 4; 0) \oplus 2L(1, 1)$                                 | $\{j_3 + am; p_1, p_2\} \oplus \{p_3;\} \oplus \{t;\}$                                                                                                              | g <sub>6,1</sub>               | 89,2                                                     | a ≥ 0                       | $a \ge 0$                   | <b>a</b> ≥ 0                        | a ≥ 0                    |
| <b>ğ</b> 5,19                  | $L(3, 4; 0) \oplus 2L(1, 1)$                                 | $\{j_3 + am; p_1, p_2\} \oplus \{p_3;\}$ $\oplus \{l + bm;\}$                                                                                                       | <b>g</b> <sub>6,1</sub>        | \$6,1                                                    | $a \ge 0$<br>$b \ne 0$      | a ≥ 0<br>b ≠ 0              | a ≥ 0<br>b = ±1                     | a ≥ 0<br>b = ±           |
| <b>8</b> 5,20                  | $L(3,6) \oplus 2L(1,1)$                                      | $\{; j\} \oplus \{t_i\} \oplus \{m_i\}$                                                                                                                             | <b>8</b> 5,20                  | 86,25                                                    |                             |                             |                                     |                          |
| <b>8</b> 5,21                  | $L(4, 1) \oplus L(1, 1)$                                     | $\{t, k_3; p_3, m\} \oplus \{j_3;\}$                                                                                                                                | <b>8</b> 5,21                  | <b>g</b> <sup>d</sup> 6,25<br><b>g</b> <sup>d</sup> 6,32 |                             |                             |                                     |                          |
| 8 5,22                         | $L(4, 1) \oplus L(1, 1)$                                     | $\{t, k_2; p_2, m\} \oplus \{p_1\}$                                                                                                                                 | 87.2                           | <b><i>ĝ</i></b> <sup>d</sup> 8,11                        |                             |                             |                                     |                          |
| <b>ĝ</b> 5,23                  | $L(4, 1) \oplus L(1, 1)$                                     | $\{t, k_2 + ap_3; p_2, m\} \oplus \{p_1;\}$                                                                                                                         | 87,2                           | $\tilde{g}_{7,2}^{d}$                                    | a > 0                       | a > 0                       | a = 1                               | <i>a</i> = 1             |
| 8 5,24                         | $L(4, 1) \oplus L(1, 1)$                                     | $\{k_1 + bp_3, k_3 + at; p_1, m\} \oplus \{p_2;\}$                                                                                                                  | 87,11                          | 8 <sup>d</sup> 7,11                                      | a > 0                       | a > 0                       | a == 1                              | <i>a</i> = 1             |
|                                |                                                              |                                                                                                                                                                     | 0,,,,                          | 07,11                                                    | $b \ge 0$                   | $b \ge 0$                   | $b \ge 0$                           | <i>b</i> ≥0              |
| <b>8</b> 5,25                  | $L(4, 11) \oplus L(1, 1)$                                    | $\{j_3; k_1 + ap_2, k_2 - ap_1, m\}$                                                                                                                                | <b>ğ</b> 6,5                   | $\tilde{g}_{6,5}^{d}$                                    | a > 0                       | a > 0                       | a == 1                              | a = 1                    |
| 2,22                           | ., , , .                                                     | $\oplus \{k_3 + bp_3;\}$                                                                                                                                            | 80,5                           | 80,5                                                     | $b \in \mathbb{R}$          | $b \in \mathbb{R}$          | b∈ℝ                                 | $b \in \mathbb{R}$       |
| <b>ĝ</b> 5,26                  | $L(4, 11) \oplus L(1, 1)$                                    | $\{j_3; k_1 + ap_2, k_2 - ap_1, m\} \oplus \{p_3;\}$                                                                                                                | ā                              | <b>g</b> d<br>86,5                                       | a > 0                       | a > 0                       | a == 1                              | a = 1                    |
| <b>8</b> 5,20<br><b>8</b> 5,27 | L(5, 4)                                                      | $k_1 + ap_2, k_2 - ap_1 + cp_2,$                                                                                                                                    | 80,5<br>87,10                  | 80,5<br>87,10                                            | a > 0                       | a > 0                       | a = 1                               | a = 1                    |
| 5 5,27                         | E(3,4)                                                       |                                                                                                                                                                     | 87,10                          | \$7,10                                                   | $b \ge 0$                   | $b \ge 0$                   | b ≥ 0                               | $b \ge 0$                |
|                                |                                                              | $k_3 + bp_2, p_3; m$<br>(c, b) $\neq (0, 0)$                                                                                                                        |                                |                                                          | $c \in \mathbb{R}$          | $c \in \mathbb{R}$          | $c \in \mathbb{R}$                  | c∈R                      |
| ä                              | L(5, 4)                                                      | $(c, b) \neq (0, 0)$<br>$k_1 + cp_2, k_2 - cp_1 + dp_2,$                                                                                                            | -                              | 87.10                                                    | a > 0                       | a > 0                       |                                     |                          |
| g <sub>5,28</sub>              | L(3,4)                                                       |                                                                                                                                                                     | <b>8</b> 7,10                  | 87,10                                                    |                             | u > 0<br>b > 0              | a = 1                               | a = 1                    |
|                                |                                                              | $k_3 + ap_1 + bp_2, p_3; m$                                                                                                                                         |                                |                                                          | b > 0<br>$c \neq 0$         | b > 0<br>$c \neq 0$         | b > 0<br>$c \neq 0$                 | b > 0<br>$c \neq 0$      |
|                                |                                                              |                                                                                                                                                                     |                                |                                                          | d∈R                         | d∈ℝ                         | d∈R                                 | d∈R                      |
| ā                              | L(5, 4)                                                      | k + an k - an k - m                                                                                                                                                 | ā                              | $\tilde{g}^{d}_{8,7}$                                    | $a \in \mathbb{R}$<br>a > 0 | $a \in \mathbb{R}$<br>a > 0 |                                     |                          |
| g 5,29                         |                                                              | $k_1 + ap_2, k_2 - ap_1, k_3, p_3; m$                                                                                                                               | 88,7                           | 88,7                                                     |                             |                             | a = 1                               | a = 1                    |
| 8 5.30                         | L(5, 4)                                                      | $k_1, k_2 + bp_3, p_1 + ap_3, p_2; m$                                                                                                                               | 87,10                          | $\tilde{g}^{d}_{7,10}$                                   | a > 0                       | a > 0                       | a > 0                               | a > 0                    |
|                                | 1 (5 4)                                                      |                                                                                                                                                                     |                                | ≃d                                                       | b > 0                       | b > 0                       | b = 1                               | b = 1                    |
| <b>9</b> 5,31                  | L(5, 4)                                                      | $k_1, k_2, p_1 + ap_3, p_2; m$                                                                                                                                      | <b>g</b> 7,10                  | 87,10                                                    | a > 0                       | a > 0                       | a > 0                               | a > 0                    |
| \$ 5,32                        | L(5, 4)                                                      | $k_1, k_2 + ap_3, p_1, p_2; m$                                                                                                                                      | 88,3                           | 88.3                                                     | a > 0                       | a > 0                       | a = 1                               | a = 1                    |
| § 5,33                         | L(5, 4)                                                      | $k_1, k_2, p_1, p_2; m$                                                                                                                                             | 89,1                           | $\tilde{g}_{10,2}^{d}$                                   |                             |                             |                                     |                          |
|                                |                                                              |                                                                                                                                                                     |                                | 29                                                       | 0                           | a > 0                       | a 1                                 | a = 1                    |
| <b>8</b> 5,34                  | L(5, 5)                                                      | $k_3 + at + ck_1, k_2 + bp_3; p_1, p_2, m$                                                                                                                          | <b>8</b> 7,11                  | 87,11                                                    | a > 0<br>$b \in \mathbb{R}$ | a > 0<br>$b \ge 0$          | a = 1<br>$b \in \mathbb{R}$         | a = 1<br>$b \ge 0$       |

| Table 3. | (continued) |
|----------|-------------|
|----------|-------------|

|                  | 1                                 |                                                                                         |                  |                                                        | R                     | ange of p             | arameters                    |                    |
|------------------|-----------------------------------|-----------------------------------------------------------------------------------------|------------------|--------------------------------------------------------|-----------------------|-----------------------|------------------------------|--------------------|
| Number           | Isomorphism class<br>and comments | Basis                                                                                   | nor <sub>ĝ</sub> | nor <sub>ã</sub> ª                                     | Ĝ <sub>0</sub>        | Ğ                     | $\mathbf{\tilde{G}}_{0}^{d}$ | Ĝď                 |
| 5,35             | L(5,5)                            | $k_1 + at, k_2 + cp_3 + bt; p_1, p_2, m$                                                | <b>ğ</b> 7,2     | $\hat{g}_{7,2}^{d}$                                    | $a > \overline{0}$    | <b>a</b> > 0          | a = 1                        | a = 1              |
| 5,35             | -(-,-)                            | 1 , 2 , 3 , 11, 12,                                                                     | 07,2             | 07,2                                                   | $b \ge 0$             | $b \ge 0$             | $b \ge 0$                    | <i>b</i> ≥0        |
|                  |                                   |                                                                                         |                  |                                                        | $c \neq 0$            | c > 0                 | <i>c</i> ≠ 0                 | c > 0              |
| 5,36             | L(5, 13; 0)                       | $j_3 + ak_3, p_3; k_1, k_2, m$                                                          | <b>ğ</b> 6.2     | $\tilde{g}_{6,2}^{d}$                                  | <i>a</i> ≠ 0          | a > 0                 | $a = \pm 1$                  | a = 1              |
| 5,37             | L(5, 13; 0)                       | $j_3 + ak_3 + bt, p_3; p_1, p_2, m$                                                     | \$7,1            | $\hat{g}_{7,1}^{d}$                                    | a ≠ 0                 | a > 0                 | $a = \pm 1$                  | <i>a</i> = 1       |
|                  | -(-,, ,                           |                                                                                         | 0,,,             | 0.7,1                                                  | $b \ge 0$             | $b \ge 0$             | $b \ge 0$                    | $b \ge 0$          |
| 5,38             | L(5,13; 0)                        | $j_3 + ap_3, k_3 + bp_3; p_1, p_2, m$                                                   | <i>ã</i> 6.2     | $\hat{g}_{6,2}^{d}$                                    | a ≠ 0                 | a > 0                 | $a = \pm 1$                  | a = 1              |
| 5,50             | _ ( , , - , , ,                   | 55 <b>1</b> 57 5 <b>1</b> 57 <b>1</b> 77 <b>1</b> 27                                    | 00,2             | 00,1                                                   | $b \in \mathbb{R}$    | b≥0                   | $b \in \mathbb{R}$           | <i>b</i> ≥0        |
| \$ 5.39          | L(5, 13; 0)                       | $j_3 + ap_3, k_3 + bt; p_1, p_2, m$                                                     | <i>§</i> 6.4     | $\hat{g}_{6,4}^{d}$                                    | <i>a</i> ≠ 0          | <i>a</i> ≠ 0          | $a = \pm 1$                  | $a = \pm$          |
|                  |                                   | <b>1</b> , |                  | 00,0                                                   | b > 0                 | b > 0                 | b > 0                        | b > 0              |
| 8 5.40           | L(5, 13; 0)                       | $j_3 + ap_3, k_3; p_1, p_2, m$                                                          | <i>8</i> 6,3     | $\tilde{g}_{6,3}^{d}$                                  | a ≠ 0                 | a > 0                 | $a = \pm 1$                  | a = 1              |
| \$ 5,41          | L(5, 35)                          | $j_3 + bp_3, k_3 + cp_3, k_1 + ap_2,$                                                   | \$6.5            | 8 <sup>d</sup> 6,5                                     | a > 0                 | a > 0                 | a = 1                        | a = 1              |
| 53,41            | -(-,/                             | $k_2 - ap_1, m$                                                                         | 80,5             | 80,5                                                   | <i>b</i> ≠ 0          | b > 0                 | <i>b</i> ≠ 0                 | b > 0              |
|                  |                                   |                                                                                         |                  |                                                        | $c \in \mathbb{R}$    | c∈R                   | c∈R                          | c∈ℝ                |
| 35,42            | L(5, 35)                          | $j_3 + bk_3, p_3; k_1 + ap_2, k_2 - ap_1, m$                                            | õ                | $\tilde{g}_{6,5}^{d}$                                  | a > 0                 | a > 0                 | a = 1                        | a = 1              |
| 55,42            | D(0, 55)                          | $j_3 : on_3, p_3, n_1 : up_2, n_2 : up_1, n_1$                                          | 86,5             | 80,5                                                   | b≠0                   | b > 0                 | <b>b</b> ≠0                  | b > 0              |
|                  |                                   |                                                                                         |                  |                                                        | 0,0                   |                       | 0,0                          | 0.0                |
| <b>8</b> 4,1     | 4L(1,1)                           | $\{p_1;\} \oplus \{p_2;\} \oplus \{p_3;\} \oplus \{t + am;\}$                           | <i>ã</i> 8,1     | $\bar{g}_{8,1}^{d}$                                    | a ≠ 0                 | <i>a</i> ≠ 0          | $a = \pm 1$                  | $a = \pm$          |
| <b>ğ</b> 4,2     | 4L(1, 1)                          | $\{p_1;\} \oplus \{p_2;\} \oplus \{p_3;\} \oplus \{t;\}$                                | $\hat{g}_{8,1}$  | 89.2                                                   |                       |                       |                              |                    |
| <b>8</b> 4,3     | 4L(1, 1)                          | $\{p_1;\} \oplus \{p_2;\} \oplus \{p_3;\} \oplus \{m;\}$                                | <b>8</b> 11,1    | 8 12,1                                                 |                       |                       |                              |                    |
| <u>.</u><br>84,4 | 4L(1,1)                           | $\{k_3+at;\}\oplus\{p_1;\}\oplus\{p_2;\}\oplus\{m;\}$                                   | <b>g</b> 8,5     | 88,5                                                   | a > 0                 | a > 0                 | a = 1                        | a = 1              |
| <b>ĝ</b> 4,5     | 4L(1,1)                           | $\{k_3;\} \oplus \{p_1;\} \oplus \{p_2;\} \oplus \{m\}$                                 | <b>§</b> 9,1     | $\tilde{g}_{10,2}^{d}$                                 |                       |                       |                              |                    |
| <b>8</b> 4.6     | 4L(1,1)                           | $\{t_i\} \oplus \{p_1_i\} \oplus \{p_2_i\} \oplus \{m_i\}$                              | <i>8</i> 8,2     | 89,5                                                   |                       |                       |                              |                    |
| <b>8</b> 4.7     | 4L(1,1)                           | $\{k_1;\} \oplus \{k_2 + ap_2;\} \oplus \{p_3;\} \oplus \{m;\}$                         | 87,10            | $\bar{g}_{7,10}^{d}$                                   | $a \neq 0$            | a > 0                 | $a = \pm 1$                  | a = 1              |
|                  | 4L(1,1)                           | $\{k_1;\} \oplus \{k_2;\} \oplus \{p_3;\} \oplus \{m;\}$                                | \$ 10,1          | $\tilde{g}_{11,2}^{d}$                                 |                       |                       |                              |                    |
| <b>8</b> 4,9     | 4L(1,1)                           | $\{j_3;\} \oplus \{p_3;\} \oplus \{\iota\} \oplus \{m\}$                                | 8 5,21           | $\hat{g}_{6,32}^{d}$                                   |                       |                       |                              |                    |
| <b>ĝ</b> '4      | 4L(1,1)                           | cf table 4                                                                              |                  | ,                                                      |                       |                       |                              |                    |
| <i>8</i> 4,10    | $L(3,1) \oplus L(1,1)$            | $\{k_1, p_1; m\} \oplus \{k_2;\}$                                                       | 87,10            | $\tilde{g}_{8,13}^{d}$                                 |                       |                       |                              |                    |
| 84,11            | $L(3,1)\oplus L(1,1)$             | $\{k_1 + bp_2 + ap_3, p_1; m\}$                                                         | 87,10            | <b>8</b> 7,10                                          | a > 0                 | a > 0                 | a = 1                        | a = 1              |
|                  |                                   | $\oplus \{k_2 + bp_1;\}$                                                                | 0 /,10           | 07,10                                                  | $b \ge 0$             | $b \ge 0$             | <i>b</i> ≥0                  | b≥0                |
| <b>ğ</b> 4,12    | $L(3,1) \oplus L(1,1)$            | $\{k_1 + ap_2, k_2 - ap_1; m\}$<br>$\oplus \{k_2 + ap_1; \}$                            | <b>g</b> 7,10    | <b>g</b> <sup>d</sup> <sub>7,10</sub>                  | <i>a</i> > 0          | <i>a</i> > 0          | <i>a</i> = 1                 | <i>a</i> = 1       |
| <b>8</b> 4,13    | $L(3, 1) \oplus L(1, 1)$          | $\{k_1 + bp_2 + cp_3, p_1; m\}$                                                         | <b>ã</b> 7,10    | $\tilde{g}_{7,10}^{d}$                                 | a > 0                 | a > 0                 | a = 1                        | a = 1              |
|                  |                                   | $ \oplus \{k_2 + ap_3 + bp_1;\} $                                                       |                  |                                                        | $b \ge 0$             | <i>b</i> ≥ 0          | $b \ge 0$                    | $b \ge 0$          |
|                  |                                   |                                                                                         |                  |                                                        | $c \in \mathbb{R}$    | $c \in \mathbb{R}$    | $c \in \mathbb{R}$           | $c \in \mathbb{R}$ |
| <b>8</b> 4,14    | $L(3, 1) \oplus L(1, 1)$          | $\{k_1, p_3 + ap_1; m\} \oplus \{k_2;\}$                                                | <b>§</b> 7,10    | $\tilde{g}_{8,13}^{d}$                                 | a > 0                 | a > 0                 | a > 0                        | a > 0              |
| <b>Š</b> 4,15    | $L(3,1) \oplus L(1,1)$            | $\{k_1, p_3 + ap_1; m\} \oplus \{k_2 + bp_2;\}$                                         | 87,10            | $\hat{g}_{7,10}^{d}$                                   | a > 0                 | a > 0                 | a > 0                        | a > 0              |
|                  |                                   |                                                                                         | - ,              |                                                        | <i>b</i> ≠ 0          | b > 0                 | $b = \pm 1$                  | b = 1              |
| 34,16            | $L(3, 1) \oplus L(1, 1)$          | $k_1, k_2 + bp_1 + cp_2, p_3 + ap_1, m$                                                 | <b>8</b> 7.10    | $\tilde{g}_{7,10}^{d}$                                 | a > 0                 | a > 0                 | a > 0                        | a > 0              |
|                  |                                   |                                                                                         | 0                | 0,10                                                   | b > 0                 | b > 0                 | b = 1                        | <i>b</i> = 1       |
|                  |                                   |                                                                                         |                  |                                                        | $c \in \mathbb{R}$    | $c \in \mathbb{R}$    | $c \in \mathbb{R}$           | $c \in \mathbb{R}$ |
| 84.17            | $L(3, 1) \oplus L(1, 1)$          | $k_1 + bp_2, k_2 + cp_1 + dp_2,$                                                        | <b>§</b> 7,10    | $\tilde{g}_{7,10}^{d}$                                 | a > 0                 | a > 0                 | a > 0                        | a > 0              |
| 04,17            | -(-,-,                            | $p_3 + ap_1, m$                                                                         | 87,10            | 87,10                                                  | b > 0                 | $\tilde{b} > 0$       | b = 1                        | b = 1              |
|                  |                                   | F3 - F1,                                                                                |                  |                                                        | $c, d \in \mathbb{R}$ | $c, d \in \mathbb{R}$ | $c, d \in \mathbb{R}$        | c, d ∈             |
| 84,18            | 4L(1, 1)                          | $\{k_1 + ap_2, k_2 - ap_1; m\} \oplus \{p_3;\}$                                         | <b>8</b> 8,7     | $\tilde{g}_{8,7}^{d}$                                  | a > 0                 | a > 0                 | a = 1                        | a = 1              |
| 94,18<br>94,19   | 4L(1, 1)                          | $\{k_1 + ap_2, k_2 - ap_1 + bp_2, m\}$                                                  |                  | 88,7<br>87,10                                          | a>0                   | a > 0                 | a = 1<br>a = 1               | a = 1              |
| 54,19            | 46(1,1)                           | $(x_1 + ap_2, x_2 - ap_1 + bp_2, m)$<br>$\oplus \{p_3;\}$                               | $\hat{g}_{7,10}$ | 87,10                                                  | u > 0<br>b ≠ 0        | a ≥ 0<br>b ≠ 0        | a = 1<br>$b \neq 0$          | $b \neq 0$         |
| <b>§</b> 4,20    | 4L(1, 1)                          | $\{k_3 + at + bk_2, p_2; m\} \oplus \{p_1;\}$                                           | <b>ğ</b> 7,11    | $\tilde{g}_{7,11}^{d}$                                 | a > 0                 | <i>a</i> > 0          | a = 1                        | a = 1              |
| 54,20            | 42(1,1)                           | $\{k_3 + u_1 \neq 0, k_2, p_2, m\} \oplus \{p_1, j\}$                                   | 87,11            | 87,11                                                  | b > 0                 | b > 0                 | b > 0                        | b > 0              |
| ā                | 4L(1, 1)                          | $\{k_2 + at, p_2; m\} \oplus \{p_1;\}$                                                  | ā                | $\tilde{g}_{7,2}^{d}$                                  | a > 0                 | a > 0                 | a = 1                        | a=1                |
| 84,21<br>8       | 4L(1, 1)<br>4L(1, 1)              | $\{k_2, p_1, p_2, m\} \oplus \{p_1, \}$<br>$\{k_3, p_3 + ap_2; m\} \oplus \{p_1; \}$    | 87,2<br>87,10    | 87,2<br>8 <sup>d</sup><br>88,13                        | a > 0                 | a > 0                 | a = 1<br>a > 0               | a = 1<br>a > 0     |
| 84.22<br>8       | 4L(1, 1)<br>4L(1, 1)              | $\{k_3, p_3; m\} \oplus \{p_1;\}$                                                       | 87,10<br>88,3    | 88,13<br>89,3                                          | <b>u</b> / 0          | 4 ~ 0                 | <b>u</b> ~ 0                 | 4/0                |
| 84,23<br>8       | 4L(1, 1)<br>4L(1, 1)              | $\{k_3, p_3, m\} \oplus \{p_1, p_2;\}$<br>$\{k_3 + ap_1, p_3; m\} \oplus \{p_2;\}$      |                  | 89,3<br>88,3                                           | a > 0                 | a > 0                 | a = 1                        | a - 1              |
| 84,24<br>8       |                                   | $\{k_3 + ap_1, p_3; m\} \oplus \{p_2; \}$<br>$\{k_3 + al, p_3; m\} \oplus \{j_3; \}$    | <b>g</b> 8,3     |                                                        |                       |                       | a = 1<br>a = 1               | a = 1              |
| \$4,25           | 4L(1, 1)<br>4L(1, 1)              | $\{k_3 + ai, p_3; m\} \oplus \{j_3;\}$<br>$\{k_3, p_3; m\} \oplus \{j_3;\}$             | 85,21<br>ā       | 8 <sup>d</sup><br>8 <sup>d</sup><br>8 <sup>d</sup> ,32 | a > 0                 | a > 0                 | u - 1                        | a = 1              |
| \$4,26<br>\$"    |                                   |                                                                                         | 85,21            | 86,32                                                  |                       |                       |                              |                    |
| <u>ğ</u> ″4      | 4L(1, 1)                          | cf table 4                                                                              |                  | zd.                                                    |                       |                       |                              |                    |
| 34,27            | $L(3, 4; 0) \oplus L(1, 1)$       | $\{j_3; k_1, k_2\} \oplus \{m;\}$                                                       | <b>8</b> 6,2     | gd<br>7,28                                             | 0                     |                       |                              |                    |
| 84.28            | $L(3, 4; 0) \oplus L(1, 1)$       | $\{j_3; +ap_3; k_1, k_2\} \oplus \{m;\}$                                                | <b>8</b> 6,2     | <b>ğ</b> <sup>d</sup><br>86,2                          | a ≠ 0                 | a > 0                 | $a = \pm 1$                  | a = 1              |

|                                          |                                         |                                                                                                                                                                      |                         |                                                            | Range of parameters        |                    |                              |                    |  |
|------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------|----------------------------|--------------------|------------------------------|--------------------|--|
| Number                                   | Isomorphism class<br>and comments       | Basis                                                                                                                                                                | norg                    | nor <sub>ā</sub> d                                         | Ĝ <sub>o</sub>             | Ġ                  | $\mathbf{\tilde{G}}_{0}^{d}$ | Ğď                 |  |
| 84,29                                    | $L(3, 4; 0) \oplus L(1, 1)$             | $\{j_3 + ak_3 + bp_3; k_1, k_2\} \oplus \{m;\}$                                                                                                                      | <i>8</i> 6.2            | $\tilde{g}_{6,2}^{d}$                                      | <i>a</i> ≠ 0               | <i>a</i> > 0       | $a = \pm 1$                  | a = 1              |  |
| 54,25                                    |                                         |                                                                                                                                                                      |                         | ,-                                                         | $b \in \mathbb{R}$         | $b \in \mathbb{R}$ | $b \in \mathbb{R}$           | $b \in \mathbb{R}$ |  |
| <b>3</b> 4,30                            | $L(3, 4; 0) \oplus L(1, 1)$             | $\{k_3 + at + bj_3; p_1, p_2\} \oplus \{m_i\}$                                                                                                                       | 86.4                    | $\hat{g}_{6,4}^{d}$                                        | a > 0                      | a > 0              | <i>a</i> = 1                 | a = 1              |  |
| 54,30                                    | _(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                              | 00,4                    | 00,4                                                       | $b \neq 0$                 | b > 0              | $b \neq 0$                   | b > 0              |  |
| 3<br>4,31                                | $L(3, 4; 0) \oplus L(1, 1)$             | $\{j_3+at; p_1, p_2\} \oplus \{m;\}$                                                                                                                                 | <b>8</b> 8.2            | <b>ĝ</b> <sup>d</sup> 8,2                                  | a > 0                      | a > 0              | a = 1                        | a = 1              |  |
| 34,32                                    | $L(3, 4; 0) \oplus L(1, 1)$             | $\{j_3 + ap_3; p_1, p_2\} \oplus \{m;\}$                                                                                                                             | 87.1                    | 80,2<br>87,1                                               | a ≠ 0                      | a > 0              | $a = \pm 1$                  | a = 1              |  |
|                                          | $L(3, 4; 0) \oplus L(1, 1)$             | $\{j_3; p_1, p_2\} \oplus \{m;\}$                                                                                                                                    | 87.1<br>89.1            | 87,1<br>89,1                                               | <b>u</b> / 0               |                    |                              |                    |  |
| 4,33                                     |                                         | $\{j_3, p_1, p_2\} \oplus \{m_i\}$<br>$\{j_3 + am; p_1, p_2\} \oplus \{t_i\}$                                                                                        |                         | 89,1<br>87,19                                              | <i>a</i> ≥ 0               | a ≥ 0              | a ≥ 0                        | <i>a</i> ≥ 0       |  |
| §4,34                                    | $L(3, 4; 0) \oplus L(1, 1)$             |                                                                                                                                                                      | 86,1                    | 87,19<br>86,1                                              | <i>u</i> ≥0<br><i>a</i> ≥0 | u ≥ 0<br>a ≥ 0     | u≥0<br>a≥0                   | a≥0<br>a≥0         |  |
| \$4.35                                   | $L(3, 4; 0) \oplus L(1, 1)$             | ${j_3 + bp_3 + am; p_1, p_2} \oplus {t + cm;}$                                                                                                                       | 86,1                    | 86,1                                                       | u ≥ 0<br>b≠0               | $u \ge 0$<br>b > 0 | $b = \pm 1$                  | $u \ge 0$<br>b = 1 |  |
|                                          |                                         |                                                                                                                                                                      |                         |                                                            |                            |                    |                              |                    |  |
| -                                        | - / /                                   |                                                                                                                                                                      | -                       | •d                                                         | $c \in \mathbf{R}$         | $c \in \mathbb{R}$ | c∈R                          | c∈R                |  |
| <b>8</b> 4,36                            | $L(3, 4; 0) \oplus L(1, 1)$             | $\{j_3+am; p_1, p_2\} \oplus \{t+cm;\}$                                                                                                                              | <b>g</b> <sub>6,1</sub> | ĝ <sup>d</sup> 6,1                                         | a ≥ 0                      | $a \ge 0$          | a ≥ 0                        | $a \ge 0$          |  |
|                                          |                                         |                                                                                                                                                                      |                         |                                                            | $c \neq 0$                 | $c \neq 0$         | $c \neq 0$                   | $c \neq 0$         |  |
| <b>ĝ</b> 4,37                            | $L(3, 4; 0) \oplus L(1, 1)$             | $\{j_3+ak_3; p_1, p_2\} \oplus \{m;\}$                                                                                                                               | <b>8</b> 6,3            | <b>8</b> 6,3                                               | a ≠ 0                      | a > 0              | $a = \pm 1$                  | a = 1              |  |
| ĝ4,38                                    | $L(3, 4; 0) \oplus L(1, 1)$             | $\{j_3 + am; k_1, k_2\} \oplus \{k_3;\}$                                                                                                                             | <b>8</b> 5,10           | $\hat{g}_{6,26}^{d}$                                       | a ≥ 0                      | a ≥ 0              | a ≥ 0                        | a ≥ 0              |  |
| 84,39                                    | $L(3, 4; 0) \oplus L(1, 1)$             | $\{j_3 + bm; k_1, k_2\} \oplus \{k_3 + ap_3;\}$                                                                                                                      | <b>g</b> 5,10           | $\tilde{g}_{5,10}^{d}$                                     | a ≠ 0                      | a > 0              | $a = \pm 1$                  | a = 1              |  |
|                                          |                                         |                                                                                                                                                                      |                         |                                                            | $b \ge 0$                  | $b \ge 0$          | $b \ge 0$                    | b≥0                |  |
| <b>ĝ</b> 4.40                            | $L(3, 4; 0) \oplus L(1, 1)$             | $\{j_3 + am; k_1, k_2\} \oplus \{p_3;\}$                                                                                                                             | 85.9                    | $\tilde{g}_{6,28}^{d}$                                     | a ≥ 0                      | a ≥ 0              | a ≥ 0                        | $a \ge 0$          |  |
| 84,40<br>84,41                           | $L(3, 4; 0) \oplus L(1, 1)$             | $\{j_3 + bm; p_1, p_2\} \oplus \{k_3 + at;\}$                                                                                                                        | 8 5,13                  | 8 5,13                                                     | a > 0                      | a > 0              | a = 1                        | a = 1              |  |
| 54,41                                    | 2(3, 1, 0) © 2(1, 1)                    | ()3 * 5, \$1, \$2, \$5 (3 * 2,)                                                                                                                                      | 03,13                   | 05,15                                                      | $b \in \mathbb{R}$         | b∈R                | b∈R                          | b∈R                |  |
| -                                        | $1/2 + 0) \oplus 1/(1 + 1)$             | $(i + i) = -i \oplus (k_i)$                                                                                                                                          | ä                       | $\tilde{g}_{6,29}^{d}$                                     | $a \ge 0$                  | a ≥0               | a≥0                          | a≥0                |  |
| <u>8</u> 4,42                            | $L(3, 4; 0) \oplus L(1, 1)$             | ${j_3 + am; p_1, p_2} \oplus {k_3;}$                                                                                                                                 | 8 5,12                  | 86,29<br>-d                                                |                            |                    |                              |                    |  |
| 84,43                                    | $L(3, 4; 0) \oplus L(1, 1)$             | $\{j_3 + am; p_1, p_2\} \oplus \{p_3;\}$                                                                                                                             | 86,1                    | 87.19                                                      | a≥0                        | a≥0                | <i>a</i> ≥ 0                 | a ≥ 0              |  |
| 84,44                                    | $L(3, 4; 0) \oplus L(1, 1)$             | $\{j_3 + at; p_1, p_2\} \oplus \{p_3;\}$                                                                                                                             | 86,1                    | 86,1                                                       | a > 0                      | a > 0              | <i>a</i> = 1                 | a = 1              |  |
| 84,45                                    | $L(3, 4; 0) \oplus L(1, 1)$             | $\{j_3 + bt + am; p_1, p_2\} \oplus \{p_3;\}$                                                                                                                        | <i>8</i> 6,1            | $\tilde{g}_{6,1}^{d}$                                      | a > 0                      | a > 0              | a > 0                        | a > 0              |  |
|                                          |                                         |                                                                                                                                                                      |                         |                                                            | b≠0                        | b≠0                | $b = \pm 1$                  | $b = \pm$          |  |
| <b>8</b> 4,46                            | $L(3, 6) \oplus L(1, 1)$                | $\{; j\} \oplus \{m;\}$                                                                                                                                              | ã 5.20                  | 86,25                                                      |                            |                    |                              |                    |  |
| ĝ4,47                                    | $L(3, 6) \oplus L(1, 1)$                | $\{; j\} \oplus \{t;\}$                                                                                                                                              | <b>ã</b> 5,20           | 86,25                                                      |                            |                    |                              |                    |  |
| <b>8</b> 4,48                            | $L(3,6) \oplus L(1,1)$                  | $\{; j\} \oplus \{t+am\}$                                                                                                                                            | <b>8</b> 5,20           | $\tilde{g}_{5,20}^{d}$                                     | a ≠ 0                      | a ≠ 0              | $a = \pm 1$                  | $a = \pm$          |  |
| 84,49<br>84,49                           | L(4, 1)                                 | $k_3 + a_1, k_1 + bp_3 + cp_2; p_1, m$                                                                                                                               | ĝ <sub>6,7</sub>        | ĝ <sup>d</sup> 6,7                                         | a > 0                      | a > 0              | a = 1                        | a = 1              |  |
| 84,49                                    | 2(1,1)                                  | ······································                                                                                                                               | 80,7                    | 00,/                                                       | $b \ge 0$                  | <i>b</i> ≥0        | $b \ge 0$                    | b≥0                |  |
|                                          |                                         |                                                                                                                                                                      |                         |                                                            | c∈R                        | c∈R                | c∈R                          | c∈R                |  |
| -                                        | 1 ( 4 1 )                               |                                                                                                                                                                      | =                       | $\tilde{g}_{6,6}^{d}$                                      |                            |                    |                              |                    |  |
| <b>8</b> 4,50                            | L(4, 1)                                 | $t, k_3 + ap_1; p_3, m$                                                                                                                                              | 86.6                    |                                                            | a > 0                      | a > 0              | a = 1                        | a = 1              |  |
| 84,51                                    | L(4, 1)                                 | $t, k_3, p_3, m$                                                                                                                                                     | 87,1                    | <b><i>ã</i></b> <sup>d</sup><br><b>8</b> 8,15              |                            |                    |                              |                    |  |
| <b>8</b> 4,52                            | L(4, 1)                                 | $j_3 + at, k_3 + bt; p_3, m$                                                                                                                                         | <b>8</b> 5,21           | $\tilde{g}^{d}_{5,21}$                                     | a > 0                      | a > 0              | a = 1                        | a = 1              |  |
|                                          |                                         |                                                                                                                                                                      |                         |                                                            | $b \in \mathbb{R}$         | $b \ge 0$          | $b \in \mathbb{R}$           | b≥0                |  |
| <b>8</b> 4,53                            | L(4, 1)                                 | $t, j_3 + ak_3; p_3, m$                                                                                                                                              | 8 5,21                  | 8 5,21                                                     | <i>a</i> ≠ 0               | a > 0              | $a = \pm 1$                  | <i>a</i> = 1       |  |
| 84,54                                    | L(4, 11)                                | $j_3 + bk_3 + cp_3$ ; $k_1 + ap_2$ ,                                                                                                                                 | 86.5                    | 86,5                                                       | a > 0                      | a > 0              | a = 1                        | a = 1              |  |
|                                          |                                         | $k_2 - ap_1, m$                                                                                                                                                      |                         |                                                            | $b \neq 0$                 | b > 0              | <i>b</i> ≠ 0                 | b > 0              |  |
|                                          |                                         |                                                                                                                                                                      |                         |                                                            | $c \in \mathbb{R}$         | $c \in \mathbb{R}$ | $c \in \mathbb{R}$           | $c \in \mathbb{R}$ |  |
| 84.55                                    | L(4, 11)                                | $j_3 + cp_3$ ; $k_1 + ap_2$ , $k_2 - ap_1$ , m                                                                                                                       | 86.5                    | 86,5                                                       | a > 0                      | <i>a</i> > 0       | a = 1                        | a = 1              |  |
| 64,33                                    | -(.,)                                   | <i>y</i> <sup>3</sup> - <i>p</i> <sup>3</sup> , <i>i</i> <sup>1</sup> - <i>p</i> <sub>2</sub> , <i>i</i> <sub>2</sub> - <i>p</i> <sub>1</sub> ,                      | 80.5                    | 00,5                                                       | $c \in \mathbb{R}$         | c≥0                | $c \in \mathbb{R}$           | <i>c</i> ≥ 0       |  |
|                                          |                                         |                                                                                                                                                                      |                         |                                                            |                            |                    |                              | C = 0              |  |
| <b>8</b> 3,1                             | 3L(1,1)                                 | $\{k_1;\} \oplus \{k_2 + ap_2;\} \oplus \{m\}$                                                                                                                       | \$7,10                  | 87,10                                                      | a ≠ 0                      | a > 0              | $a = \pm 1$                  | a = 1              |  |
| <i>ã</i> <sub>3,2</sub>                  | 3L(1,1)                                 | $\{k_1 + bp_2;\} \oplus \{k_2 + bp_1 + cp_2\}$                                                                                                                       | ã7,10                   | $\tilde{g}_{7,10}^{d}$                                     | a > 0                      | a > 0              | a = 1                        | a = 1              |  |
|                                          |                                         | $+ap_3; \} \oplus \{m;\}$                                                                                                                                            |                         |                                                            | b≥0                        | <i>b</i> ≥0        | <i>b</i> ≥ 0                 | <i>b</i> ≥0        |  |
|                                          |                                         | 1500-0-0                                                                                                                                                             |                         |                                                            | $c \in \mathbb{R}$         | $c \in \mathbb{R}$ | c∈R                          | c∈ℝ                |  |
| <b>g</b> 3,3                             | 3L(1, 1)                                | $\{k_1;\} \oplus \{k_2;\} \oplus \{m;\}$                                                                                                                             | <b>8</b> 8,7            | 89,6                                                       |                            |                    | • • • •                      |                    |  |
|                                          | 3L(1, 1)                                | $\{j_3 + am;\} \oplus \{p_3;\} \oplus \{t;\}$                                                                                                                        |                         | 89,6<br>2 <sup>d</sup>                                     | a ≥ 0                      | <b>a</b> ≥0        | a≥0                          | a ≥ 0              |  |
| <b>8</b> 3,4                             |                                         | ${j_3 + am_{,1} \oplus {p_3, 3} \oplus {t_{,1}}}{{j_3 + am_{,3}} \oplus {p_3, 3} \oplus {t + bm_{,3}}}$                                                              | <u>8</u> 4,9            | gd<br>g5,42<br>gd,9                                        |                            |                    |                              |                    |  |
| <b>8</b> 3,5                             | 3L(1,1)                                 | $\{j_3 + am, j \oplus \{p_3, j \oplus \{1 + bm, j\}\}$                                                                                                               | <b>8</b> 4,9            | 84,9                                                       | a≥0                        | a≥0                | a≥0                          | a≥0                |  |
| -                                        | 21 (1, 1)                               |                                                                                                                                                                      |                         | ÷d                                                         | $b \neq 0$                 | b≠0                | $b = \pm 1$                  | $b = \pm$          |  |
| <u>8</u> 3,6                             | 3L(1, 1)                                | $\{k_3 + at;\} \oplus \{p_1;\} \oplus \{p_2;\}$                                                                                                                      | ĝ 5,13                  | 8 <sup>d</sup><br>8 <sup>d</sup><br>8 <sup>d</sup><br>6,31 | a > 0                      | a > 0              | a = 1                        | a = 1              |  |
| 83.7                                     | 3L(1, 1)                                | $\{k_3\} \oplus \{p_1\} \oplus \{p_2\}$                                                                                                                              | <b>8</b> 5,14           | 86,31                                                      |                            |                    |                              |                    |  |
| <b>g</b> <sub>3,8</sub>                  | 3L(1,1)                                 | $\{t_i\} \oplus \{p_1\} \oplus \{p_2\}$                                                                                                                              | ĝ6,1                    | 87,19                                                      |                            |                    |                              |                    |  |
|                                          | 3L(1,1)                                 | $\{t+am;\} \oplus \{p_1;\} \oplus \{p_2;\}$                                                                                                                          | <b>ĝ</b> 6,1            | $\tilde{g}_{6,1}^{d}$                                      | a ≠ 0                      | a ≠ 0              | $a = \pm 1$                  | $a = \pm$          |  |
| <b>8</b> 3,9                             | 3L(1, 1)                                | $\{j_3\} \oplus \{k_3 + at\} \oplus \{m\}$                                                                                                                           | <b>8</b> 4,25           | $\tilde{g}_{4,25}^{d}$                                     | a > 0                      | a > 0              | a = 1                        | a = 1              |  |
| -                                        | JL(1,1)                                 |                                                                                                                                                                      |                         |                                                            |                            |                    |                              |                    |  |
| <b>ğ</b> 3,10                            | 3L(1, 1)<br>3L(1, 1)                    | $\{j_3;\}\oplus\{t_i\}\oplus\{m_i\}$                                                                                                                                 | 84 9                    | 8 5 42                                                     |                            |                    |                              |                    |  |
| <b>ğ</b> 3,10<br><b>ğ</b> 3,11           | 3L(1,1)                                 |                                                                                                                                                                      | 84,9<br>84.26           | 8 5,42<br>8 5,55                                           |                            |                    |                              |                    |  |
| 83,9<br>83,10<br>83,11<br>83,12<br>83,13 |                                         | $\{j_3;\} \oplus \{t\} \oplus \{m_i\}$ $\{j_3;\} \oplus \{k_3;\} \oplus \{m_i\}$ $\{j_3;\} \oplus \{k_3;\} \oplus \{m_i\}$ $\{j_3;\} \oplus \{p_3;\} \oplus \{m_i\}$ | 84,9<br>84,26<br>85,21  | 85,42<br>85,55<br>86,32                                    |                            |                    |                              |                    |  |

## Table 3. (continued)

|                                |                                   |                                                          |                        |                                       | F                     | lange of p            | arameters                | i                     |
|--------------------------------|-----------------------------------|----------------------------------------------------------|------------------------|---------------------------------------|-----------------------|-----------------------|--------------------------|-----------------------|
| Number                         | lsomorphism class<br>and comments | Basis                                                    | norg                   | nor <sub>ĝ</sub> d                    | Ğ <sub>0</sub>        | Ĝ                     | $\tilde{G}^{d}_0$        | Ğ₫                    |
| <b>8</b> 3,15                  | 3L(1,1)                           | $\{k_3;\} \oplus \{p_1;\} \oplus \{m;\}$                 | 81,10                  | $\hat{g}_{8,13}^{d}$                  |                       |                       |                          |                       |
| <b>B</b> 3,16                  | 3L(1,1)                           | $\{k_3 + ap_2;\} \oplus \{p_1;\} \oplus \{m_i\}$         | \$7,10                 | 8 <sup>d</sup> 7,10                   | a > 0                 | a > 0                 | a = 1                    | a = 1                 |
| <b>8</b> 3,17                  | 3L(1,1)                           | $\{p_1;\} \oplus \{p_2;\} \oplus \{m;\}$                 | 89,1                   | $\tilde{g}_{10,2}^{d}$                |                       |                       |                          |                       |
| <b>8</b> 3,18                  | 3L(1,1)                           | $\{k_3 + a_1\} \oplus \{p_2\} \oplus \{m_i\}$            | 86.7                   | <i>§</i> <sup>d</sup> <sub>6,7</sub>  | a > 0                 | a > 0                 | a = 1                    | a = 1                 |
| 83,19                          | 3L(1, 1)                          | $\{t_i\} \oplus \{p_3\} \oplus \{m_i\}$                  | g6.6                   | <b>g</b> <sup>d</sup> <sub>7,20</sub> |                       |                       |                          |                       |
| 83,19<br>83,20                 | 3L(1,1)                           | $\{j_3 + ap_3;\} \oplus \{t_i\} \oplus \{m_i\}$          | 80,0<br>84,9           | <b><i>ĝ</i></b> <sup>d</sup> 4,9      | <i>a</i> ≠ 0          | a > 0                 | $a = \pm 1$              | a = 1                 |
| 83,20<br>83,21                 | 3L(1,1)                           | $\{k_1;\} \oplus \{k_2;\} \oplus \{k_3;\}$               | 8 5,10                 | 8 <sup>d</sup><br>8 <sup>d</sup> 6,26 |                       |                       |                          |                       |
| -                              | 3L(1, 1)                          | $\{k_1;\} \oplus \{k_2;\} \oplus \{k_3 + bp_3;\}$        | 8 5,10<br>8 5,11       | 8 5 11                                | a≠0                   | a > 0                 | $a = \pm 1$              | a = 1                 |
| <b>B</b> 3,22<br><b>B</b> 3,23 | 3L(1, 1)                          | $\{k_1 + ap_1;\} \oplus \{k_2 + ap_2;\} \oplus \{k_3;\}$ | 85,11<br>84,1          | 8311<br>84,1                          | a ≠ 0                 | a > 0                 | $a = \pm 1$              | a = 1                 |
| 53,23                          | 52(1,1)                           | $a \neq b \neq 0$                                        |                        |                                       |                       |                       |                          |                       |
| <b>8</b> 3,24                  | 3L(1,1)                           | $\{k_1 + ap_1;\} \oplus \{k_2;\} \oplus \{k_3;\}$        | 84.3                   | $\tilde{g}_{4,3}^{\prime d}$          | <i>a</i> ≠ 0          | a > 0                 | $a = \pm 1$              | a = 1                 |
| <b>8</b> 3,25                  | 3L(1,1)                           | $\{k_1;\} \oplus \{k_2 + ap_2;\} \oplus \{p_3;\}$        | <i>ĝ</i> 4,7           | 8d,7                                  | $a \neq 0$            | a > 0                 | $a = \pm 1$              | a = 1                 |
| <b>8</b> 3,26                  | 3L(1,1)                           | $\{k_1;\}\oplus\{k_2;\}\oplus\{p_3;\}$                   | 85,9                   | $\tilde{g}_{6,28}^{d}$                |                       |                       |                          |                       |
| <b>g</b> 3,27                  | 3L(1, 1)                          | $\{p_1;\} \oplus \{p_2;\} \oplus \{p_3;\}$               | $\tilde{g}_{8,1}$      | 89,2                                  |                       |                       |                          |                       |
| <b>ĝ</b> 3,28                  | L(3,1)                            | $k_1, k_2 + ap_1 + cp_2 + bp_3; m$                       | <b>ã</b> 7,10          | $\tilde{g}_{7,10}^{d}$                | $a \ge 0$             | a ≥ 0                 | a ≥ 0                    | a≥0                   |
|                                |                                   |                                                          |                        |                                       | b > 0                 | b > 0                 | b = 1                    | b = 1                 |
|                                |                                   |                                                          |                        |                                       | $c \in \mathbb{R}$    | $c \in \mathbb{R}$    | $c \in \mathbb{R}$       | $c \in \mathbb{R}$    |
| <b>8</b> 3,29                  | L(3,1)                            | $k_1 + ap_2, k_2 + bp_1 + cp_2 + dp_3; m$                | <b>õ</b> 7.10          | $\tilde{g}_{7,10}^{d}$                | a > 0                 | a > 0                 | a > 0                    | a > 0                 |
| 0 2.22                         |                                   | a≠b                                                      | 0/110                  |                                       | $b, c \in \mathbb{R}$ | b, $c \in \mathbb{R}$ | $b, c \in \mathbb{R}$    | $b, c \in \mathbb{R}$ |
|                                |                                   |                                                          |                        |                                       | d > 0                 | d > 0                 | d = 1                    | d = 1                 |
| <b>g</b> 3,30                  | L(3, 1)                           | $k_1 + ap_2, k_2 - ap_1 + bp_2; m$                       | Ĩ7.10                  | $\hat{g}_{7,10}^{d}$                  | a > 0                 | a > 0                 | a = 1                    | a = 1                 |
| 83,30                          | L(3, 1)                           | $k_1 + u_{p_2}, k_2 = u_{p_1} + v_{p_2}, k_1$            | 57,10                  | 87,10                                 | u ≠ 0                 | u ≠ 0<br>b ≠ 0        | $b \neq 0$               | u = 1<br>b≠0          |
| 2                              | L(3, 1)                           | $k_1 + ap_2, k_2 - ap_1; m$                              |                        | <b>g</b> <sup>d</sup> <sub>8,7</sub>  | a > 0                 | a > 0                 | a = 1                    | a = 1                 |
| 83,31                          | L(3, 1)<br>L(3, 1)                |                                                          | ĝ <sub>8,7</sub>       | 88,7<br>85,21                         |                       | a > 0<br>a > 0        | a = 1<br>$a = \pm 1$     |                       |
| 83,32                          | L(3, 1)                           | $j_3 + ak_3 + bt, p_3; m$                                | <b>8</b> 5,21          | 85,21                                 | a≠0<br>b≥0            | <i>u</i> > 0<br>b ≥ 0 | $u = \pm 1$<br>$b \ge 0$ | a = 1<br>$b \ge 0$    |
| -                              | 1 (2 1)                           | 1                                                        |                        | ĝ <sup>d</sup> 9,6                    | 0 ≠ 0                 | 0≠0                   | 0≠0                      | 0≠0                   |
| 83,33                          | L(3, 1)                           | $k_3, p_3, m$                                            | <b>ğ</b> 9,1           | 89,6<br>≄d                            | - > 0                 |                       | 1                        |                       |
| 83,34                          | L(3, 1)                           | $k_3 + at, p_3; m$                                       | g <sub>7,1</sub>       | <i>ã</i> <sup>d</sup><br>7,1          | a > 0                 | a > 0                 | a = 1                    | a = 1                 |
| 83,35                          | L(3, 1)                           | $k_2, p_2 + ap_1, m$                                     | g <sub>6,8</sub>       | <b>g</b> <sup>d</sup> <sub>6,8</sub>  | a > 0                 | a > 0                 | a > 0                    | a > 0                 |
| <b>8</b> 3,36                  | L(3, 1)                           | $k_3+at+bk_2, p_2; m$                                    | <b>ğ</b> 6.7           | $\tilde{g}_{6,7}^{d}$                 | a > 0                 | a > 0                 | a = 1                    | a = 1                 |
| -                              |                                   |                                                          |                        | <b>~</b> d                            | b > 0                 | b > 0                 | b > 0                    | b > 0                 |
| <b>ğ</b> 3,37                  | L(3, 1)                           | $k_3 + ap_1, p_3 + bp_2; m$                              | ${m{	ilde{g}}}_{7,10}$ | $\tilde{g}^{d}_{7,10}$                | a > 0                 | a > 0                 | a = 1                    | a = 1                 |
| -                              | • / • • · ·                       | •                                                        |                        | •d                                    | b > 0                 | b > 0                 | b > 0                    | b > 0                 |
| 83,38                          | L(3, 1)                           | $k_3 + ap_1, p_3, m$                                     | <b>8</b> 8,3           | 88,3                                  | a > 0                 | a > 0                 | a = 1                    | a = 1                 |
| <b>8</b> 3,39                  | L(3, 1)                           | $j_3 + bp_3, k_3 + at; m$                                | <b>8</b> 4,25          | $\tilde{g}_{4,25}^{d}$                | a > 0                 | a > 0                 | a = 1                    | a = 1                 |
|                                |                                   |                                                          |                        |                                       | $b \neq 0$            | b > 0                 | b ≠ 0                    | b > 0                 |
| <b>8</b> 3,40                  | L(3, 1)                           | $j_3 + ap_3, k_3; m$                                     | ã 5,21                 | ĝ <sup>d</sup> 5,21                   | <i>a</i> ≠ 0          | a > 0                 | $a = \pm 1$              | a = 1                 |
| <b>8</b> 3,41                  | L(3, 4; 0)                        | $j_3 + ak_3, k_1, k_2$                                   | 85,10                  | <b>g</b> <sup>d</sup> 5,10            | a ≠ 0                 | a > 0                 | $a = \pm 1$              | a = 1                 |
| 83,42                          | L(3, 4; 0)                        | $k_3 + ap_3 + bj_3$ ; $k_1$ , $k_2$                      | ã 5,11                 | 8 <sup>d</sup> 5,11                   | <i>a</i> ≠ 0          | $a \neq 0$            | $a = \neq 1$             | $a = \pm 1$           |
|                                |                                   |                                                          |                        |                                       | b≠0                   | b > 0                 | <b>b</b> ≠ 0             | b > 0                 |
| 83,43                          | L(3, 4; 0)                        | $j_3; k_1, k_2$                                          | §5,9                   | 86,28                                 |                       |                       |                          |                       |
| 83,44                          | L(3, 4; 0)                        | $j_3 + ap_3; k_1, k_2$                                   | 85,9                   | 85,9                                  | a ≠ 0                 | a > 0                 | $a = \pm 1$              | a = 1                 |
| <b>8</b> 3,45                  | L(3, 4; 0)                        | $j_3 + ak_3; k_1, k_2$                                   | 85,12                  | <b>8</b><br><b>8</b><br>5,12          | <i>a</i> ≠ 0          | a > 0                 | $a = \pm 1$              | a = 1                 |
| <b>§</b> 3,46                  | L(3, 4; 0)                        | $j_3; p_1, p_2$                                          | \$7,1                  | $\hat{g}_{8,15}^{d}$                  |                       |                       |                          |                       |
| <b>8</b> 3,47                  | L(3, 4; 0)                        | $j_3 + at + bm; p_1, p_2$                                | <b>8</b> 6.1           | gd,1                                  | a ≠ 0                 | a ≠ 0                 | $a = \pm 1$              | $a = \pm 1$           |
|                                |                                   |                                                          | 00,1                   | 00,1                                  | <i>b</i> ≥0           | $b \ge 0$             | $b \ge 0$                | $b \ge 0$             |
| <b>8</b> 3,48                  | L(3, 4; 0)                        | $j_3 + am; p_1, p_2$                                     | <b>õ</b> 7,1           | 8 <sup>d</sup> 8,15                   | a > 0                 | a > 0                 | a > 0                    | a > 0                 |
| 83,49                          | L(3, 4; 0)                        | $j_3 + ap_3; p_1, p_2$                                   | 86,1                   | 8 <sup>d</sup> ,1                     | a ≠ 0                 | a > 0                 | $a = \pm 1$              | a = 1                 |
| <b>8</b> 3,50                  | L(3, 4; 0)                        | $k_3 + at + bj_3; p_1, p_2$                              | 85,13                  | 8 5,13                                | a > 0                 | a>0                   | a = 1                    | a = 1                 |
|                                |                                   | 5 557817 <b>8</b> 2                                      | 03,13                  | 00,13                                 | $b \neq 0$            | b > 0                 | $b \neq 0$               | b > 0                 |
| <b>ĝ</b> 3,51                  | L(3, 4; 0)                        | $j_3 + am; k_1, k_2$                                     | <i>ĝ</i> 6,2           | $\tilde{g}_{7,28}^{\mathrm{d}}$       | <i>a</i> > 0          | a > 0                 | a > 0                    | a > 0                 |
| <b>8</b> 3,52                  | L(3, 6)                           | ; <b>j</b>                                               | 56,2<br>§5,20          | 87,28<br>86,25                        | <b>u</b> - V          | <b>u</b> - 0          | <b>u</b> = 0             | <b>u</b> - 0          |
|                                |                                   |                                                          |                        |                                       |                       |                       |                          |                       |
| <b>8</b> 2,1                   | 2L(1, 1)                          | $\{j_3+am;\}\oplus\{t;\}$                                | <b>ğ</b> 4,9           | \$ 5,42                               | $a \ge 0$             | a ≥ 0                 | <i>a</i> ≥ 0             | a ≥ 0                 |
| <b>ğ</b> 2,2                   | 2L(1,1)                           | $\{j_3+cp_3+bm;\}\oplus\{t+am;\}$                        | <i>8</i> 4,9           | <b>ğ</b> <sup>d</sup><br><b>8</b> 4,9 | <i>a</i> ≠ 0          | $a \neq 0$            | $a = \pm 1$              | $a = \pm 1$           |
|                                |                                   |                                                          |                        |                                       | $b \ge 0$             | $b \ge 0$             | $b \ge 0$                | $b \ge 0$             |
|                                |                                   |                                                          |                        |                                       | $c \in \mathbb{R}$    | $c \ge 0$             | $c \in \mathbb{R}$       | $c \ge 0$             |
| <b>8</b> 2,3                   | 2L(1,1)                           | $\{j_3+bp_3+am_i\}\oplus\{t_i\}$                         | \$4,9                  | <b>ğ</b> <sup>d</sup><br>4,9          | a ≥ 0                 | a ≥ 0                 | <i>a</i> ≥ 0             | a≥0                   |
|                                |                                   |                                                          |                        |                                       | <i>b</i> ≠ 0          | b > 0                 | $b = \pm 1$              | b = 1                 |
|                                | 2L(1, 1)                          | $\{j_3 + am; ) \oplus \{p_3; \}$                         | 84.9                   | § 5,42                                |                       | a ≥ 0                 |                          | -                     |

|                          |                                   |                                                |                          |                                              |                    | Range of                        | parameters                            |                    |
|--------------------------|-----------------------------------|------------------------------------------------|--------------------------|----------------------------------------------|--------------------|---------------------------------|---------------------------------------|--------------------|
| Number                   | Isomorphism class<br>and comments | Basis                                          | nor <sub>ğ</sub>         | nor <sub>ğ</sub> ı                           | Ĝ <sub>0</sub>     | Ĝ                               | $\mathbf{\tilde{G}}_{0}^{\mathrm{d}}$ | Ĝď                 |
| <b><i>ã</i></b> 2.5      | 2L(1,1)                           | ${j_3 + a_1;} \oplus {p_3;}$                   | <b>ğ</b> 4,9             | <b>g</b> <sup>d</sup> 4,9                    | <b>a</b> > 0       | a > 0                           | a == 1                                | a = 1              |
| 82.6                     | 2L(1,1)                           | $\{j_3 + bt + am;\} \oplus \{p_3;\}$           | 84.9                     | $\bar{g}_{4,9}^{d}$                          | a > 0              | a > 0                           | a > 0                                 | a > 0              |
|                          |                                   |                                                |                          |                                              | $b \in \mathbb{R}$ | $b \in \mathbb{R}$              | $b=0,\pm 1$                           | $b=0,\pm$          |
| <b><i>ž</i></b> 2,7      | 2L(1,1)                           | $\{k_2 + ap_1;\} \oplus \{p_3;\}$              | <b>§</b> 5.2             | $\tilde{g}_{5,2}^{d}$                        | a > 0              | a > 0                           | a == 1                                | a = 1              |
| 82.8                     | 2L(1,1)                           | $\{k_2;\} \oplus \{p_3;\}$                     | <b>\$</b> 5.6            | $\tilde{g}_{6,36}^{d}$                       |                    |                                 |                                       |                    |
| 82.9                     | 2L(1,1)                           | $\{k_3+at;\}\oplus\{p_1;\}$                    | \$4.4                    | 8 <sup>d</sup> ,4                            | a > 0              | a > 0                           | a = 1                                 | a = 1              |
| <b>\$</b> 2,10           | 2L(1,1)                           | $\{k_1;\} \oplus \{k_2;\}$                     | <i>§</i> 6.2             | $\hat{g}_{7,28}^{d}$                         |                    |                                 |                                       |                    |
| <b>ğ</b> <sub>2,11</sub> | 2L(1,1)                           | $\{k_1 + bp_2;\} \oplus$                       | <b>8</b> 5,3             | $\tilde{g}_{5,3}^{d}$                        | a > 0              | a > 0                           | a = 1                                 | a = 1              |
|                          |                                   | $\{k_2 + bp_1 + cp_2 + ap_3\}$                 |                          |                                              | $b \ge 0$          | $b \ge 0$                       | $b \ge 0$                             | $b \ge 0$          |
|                          |                                   |                                                |                          |                                              | $c \in \mathbb{R}$ | <i>c</i> ≥ 0                    | $c \in \mathbb{R}$                    | $c \ge 0$          |
| $\tilde{g}_{2,12}$       | 2L(1,1)                           | $\{k_1;\} \oplus \{k_2 + ap_2;\}$              | <b><i>ī</i></b> 5.4      | 8 <sup>d</sup> 5.4                           | a ≠ 0              | a > 0                           | $a = \pm 1$                           | a = 1              |
| <b><i>ĝ</i></b> 2,13     | 2L(1,1)                           | $\{j_3 + bm_i\} \oplus \{k_3 + at_i\}$         | \$ 4.25                  | <b>Ž</b> <sup>d</sup> 4,25                   | a > 0              | a > 0                           | a = 1                                 | a = 1              |
| 02,15                    |                                   |                                                | 04,20                    |                                              | $b \in \mathbb{R}$ | $b \in \mathbb{R}$              | $b \in \mathbb{R}$                    | $b \in \mathbb{R}$ |
| <i>8</i> 2,14            | 2L(1,1)                           | $\{j_3 + am;\} \oplus \{k_3;\}$                | $\tilde{g}_{4,26}$       | 85,55                                        | $a \ge 0$          | <i>a</i> ≥ 0                    | $a \ge 0$                             | $a \ge 0$          |
| 82.15                    | 2L(1,1)                           | $\{t+am;\} \oplus \{p_3;\}$                    | <b>B</b> 6.1             | $\hat{g}_{6,1}^{d}$                          | <i>a</i> ≠ 0       | a ≠ 0                           | $a = \pm 1$                           | $a = \pm 1$        |
| 82,16                    | 2L(1,1)                           | $\{t;\} \oplus \{p_3;\}$                       | 86.1                     | 87.19                                        |                    |                                 |                                       |                    |
| \$2,17                   | 2L(1,1)                           | $\{p_3;\} \oplus \{m;\}$                       | <b>g</b> <sub>9,1</sub>  | 8 10,2                                       |                    |                                 |                                       |                    |
| <b>8</b> 2,18            | 2L(1,1)                           | $\{k_3 + at + bj_3;\} \oplus \{m_i\}$          | 84,25                    | 84,25                                        | a > 0              | a > 0                           | a = 1                                 | a = 1              |
|                          |                                   |                                                |                          |                                              | $b \neq 0$         | b > 0                           | <b>b</b> ≠ 0                          | b > 0              |
| <b>g</b> <sub>2,19</sub> | 2L(1,1)                           | $\{j_3+at;\}\oplus\{m;\}$                      | § 5,21                   | 8 <sup>d</sup> 5,21                          | a > 0              | a > 0                           | a = 1                                 | a = 1              |
| ã 2,20                   | 2L(1,1)                           | $\{j_3;\} \oplus \{m\}$                        | \$ 5,21                  | $\tilde{g}_{6,32}^{d}$                       |                    |                                 |                                       |                    |
| <b><i>ĝ</i></b> 2,21     | 2L(1,1)                           | $\{j_3+ak_3;\}\oplus\{m\}$                     | 84,26                    | 8 <sup>d</sup> 4,26                          | $a \neq 0$         | a > 0                           | $a = \pm 1$                           | a = 1              |
| <b><i>ĝ</i></b> 2,22     | 2L(1,1)                           | $\{j_3 + ap_3;\} \oplus \{m;\}$                | \$ 5,21                  | \$ 5,21                                      | <i>a</i> ≠ 0       | a > 0                           | $a = \pm 1$                           | a = 1              |
| <b><i>ã</i></b> 2,23     | 2L(1,1)                           | $\{k_3 + at;\} \oplus \{m;\}$                  | 86.4                     | 86,4                                         | a > 0              | a > 0                           | a = 1                                 | a = 1              |
| <b>8</b> 2,24            | 2L(1,1)                           | $\{k_3;\} \oplus \{m\}$                        | ĝ8,7                     | 89,6                                         |                    |                                 |                                       |                    |
| <b><i>ĝ</i></b> 2,25     | 2L(1,1)                           | $\{t;\} \oplus \{m;\}$                         | $\tilde{g}_{8,1}$        | 89,2                                         |                    |                                 |                                       |                    |
| <b>g</b> <sub>2,26</sub> | 2L(1,1)                           | $\{k_3+ap_1;\}\oplus\{m;\}$                    | \$7,10                   | 87,10                                        | <i>a</i> ≠ 0       | a > 0                           | $a = \pm 1$                           | a = 1              |
| ã 2,27                   | 2L(1, 1)                          | $\{p_1;\} \oplus \{p_2;\}$                     | <b>ỹ</b> 7,1             | $\tilde{g}_{8,15}^{d}$                       |                    |                                 |                                       |                    |
| <b>§</b> 1,1             | L(1, 1)                           | $j_3 + am;$                                    | <b>g</b> <sub>5,21</sub> | <b><i>ã</i></b> <sup>d</sup> <sub>6,32</sub> | <b>a</b> ≥0        | a≥0                             | <b>a</b> ≥0                           | $a \ge 0$          |
| 81,1<br>81.2             | L(1, 1)                           | $k_3 + at + bj_3;$                             | \$ 5,21<br>\$ 3,10       | 86,32<br>83,10                               | $a \ge 0$          | $a \ge 0$<br>a > 0              | a = 1                                 | a = 1              |
| 51,2                     | 2(1,1)                            | k3 · u1 · 0/3,                                 | 83,10                    | 83,10                                        | $b \neq 0$         | u > 0<br>b > 0                  | u = 1<br>$b \neq 0$                   | b > 0              |
| $\tilde{g}_{1,3}$        | L(1,1)                            | $j_3 + at + bm;$                               | <b>Ž</b> 4,9             | $\tilde{g}_{4,9}^{d}$                        | a > 0              | a > 0                           | a = 1                                 | a = 1              |
| 81,3                     | 2(1,1)                            | <i>y</i> <sub>3</sub> • <b>u</b> + <i>om</i> , | 84,9                     | 84,9                                         | $b \in \mathbb{R}$ | $u \ge 0$<br>$b \in \mathbb{R}$ | u = 1<br>$b \in \mathbb{R}$           | $b \in \mathbb{R}$ |
| $\hat{g}_{1,4}$          | L(1,1)                            | $l_{3} + ak_{3};$                              | <b>\$</b> 4,26           | $\tilde{g}_{4,26}^{d}$                       | $a \neq 0$         | a > 0                           | $a = \pm 1$                           | a = 1              |
| 81,4<br>81,5             | L(1, 1)<br>L(1, 1)                | $p_3 + a j_3;$<br>$p_3 + a j_3;$               | 84,26<br>Ž4,9            | 84,26<br>gd<br>84,9                          | a ≠ 0              | a > 0<br>a > 0                  | $a = \pm 1$<br>$a = \pm 1$            | a = 1<br>a = 1     |
| 81,5<br>81,6             | L(1, 1)<br>L(1, 1)                | $p_3 + u_{j_3}, p_{j_3};$                      | 84,9<br>\$8,2            | 84,9<br>89,5                                 | u <del>-</del> 0   | 4-0                             | $u - \pm 1$                           | <i>u</i> - 1       |
| 81,6<br>81,7             | L(1, 1)<br>L(1, 1)                | P3,<br>t;                                      |                          | 89,5<br>89,2                                 |                    |                                 |                                       |                    |
| 81,7<br>81,8             | L(1, 1)<br>L(1, 1)                | t + am;                                        | ĝ <sub>8,1</sub>         | 89,2<br>88,1                                 | a ≠ 0              | <i>a</i> ≠ 0                    | $a = \pm 1$                           | a – + 1            |
| 81,8<br>81,9             | L(1, 1)<br>L(1, 1)                | m;                                             | 88,1<br>a                | 88,1<br>812,1                                | <i>u +</i> 0       | <i>u</i> ≠ 0                    | $u = \pm 1$                           | $a = \pm 1$        |
| 81,9<br>đ                | L(1, 1)                           | $k_1 + at$                                     | ĝ <sub>11,1</sub>        | 812,1<br>č <sup>d</sup>                      | 0                  | - > 0                           |                                       |                    |

Table 3. (continued)

The similitude algebra is viewed as the semidirect sum

 $k_3 + at;$ 

 $k_3 + ap_1;$ 

k3;

 ${m {m g}}_{1,10}$ 

81,11

\$1,12

L(1, 1)

L(1, 1)

L(1,1)

$$\tilde{\mathbf{g}}^{d} = \{d\} \oplus \tilde{\mathbf{g}} \tag{3.6}$$

ĝ 5,13

**ğ**7,7

86.10

gd gd gd 88,16

86,10

a > 0

 $a \neq 0$ 

a > 0

a > 0

a = 1

 $a = \pm 1$ 

a = 1

a = 1

i.e. the factor algebra  $f \sim \{d\}$  is one dimensional and the ideal  $n \sim \tilde{g}$  is eleven dimensional and, of course, non-Abelian (and not solvable). The subalgebras of f are hence  $f_1 \sim \{d\}$  and  $f_2 \sim \{\emptyset\}$ . The classification is performed under the connected component of the extended Galilei-similitude group  $\tilde{G}_0^d$  and under the group  $\tilde{G}^d$ , including time reversal and parity.

The following three types of subalgebras of  $\tilde{g}^d$  exist.

(1) Subalgebras obtained from the subalgebra  $f_2 \sim \{\emptyset\}$  of the factor algebra. These are subalgebras of the extended Galilei algebra  $\tilde{g}$ . A list of representatives of  $\tilde{G}_0^d$  and

1506

|                                       |                          |                       |                       | Ran                   | ge of para                                      | meters                |                                            |                     |                                                  |
|---------------------------------------|--------------------------|-----------------------|-----------------------|-----------------------|-------------------------------------------------|-----------------------|--------------------------------------------|---------------------|--------------------------------------------------|
|                                       |                          |                       |                       | Under (               | $\tilde{\mathtt{G}}_0$ and $\tilde{\mathtt{G}}$ |                       |                                            |                     |                                                  |
| Number                                | lsomorphism<br>class     | <i>a</i> <sub>1</sub> | <i>a</i> <sub>2</sub> | <i>a</i> <sub>3</sub> | <i>b</i> 1                                      | <i>b</i> <sub>2</sub> | Under $\tilde{G}_0^d$<br>and $\tilde{G}^d$ | nor <sub>ĝ</sub>    | nor <sup>d</sup>                                 |
| <b>ĝ</b> ″4,1                         | $L(3,1) \oplus L(1,1)$   |                       | >                     |                       |                                                 | >                     | $b_2 = 1$                                  | <b>Ž</b> 7.10       | $\tilde{g}_{7,10}^{d}$                           |
| ĝ <sup>"</sup> 4,2                    | $L(3,1) \oplus L(1,1)$   | 0                     | >                     |                       |                                                 | >                     | $b_2 = 1$                                  | <b>ğ</b> 7,10       | 87.10                                            |
| <i>ã</i> ″4,3                         | $L(3,1) \oplus L(1,1)$   |                       | 0                     | >                     |                                                 | >                     | $b_2 = 1$                                  | 87,10               | 87,10                                            |
| 84.4                                  | $L(3, 1) \oplus L(1, 1)$ | 0                     | 0                     | >                     |                                                 | >                     | $b_2 = 1$                                  | 87,10               | $\hat{g}_{7,10}^{d}$                             |
| 84,5                                  | $L(3, 1) \oplus L(1, 1)$ |                       | >                     | 0                     |                                                 | >                     | $b_2 = 1$                                  | <b>Ž</b> 7,10       | 8 <sup>d</sup> 7,10                              |
| <b>ĝ</b> ″,6                          | $L(3,1)\oplus L(1,1)$    | 0                     | >                     | 0                     |                                                 | >                     | $b_2 = 1$                                  | 87,10               | 87.10                                            |
| <b>ĝ</b> ″,7                          | $L(3,1) \oplus L(1,1)$   |                       | 0                     | 0                     |                                                 | >                     | $b_2 = 1$                                  | <b>8</b> 7,10       | $\tilde{g}_{7,10}^{d}$                           |
| <b>ĝ</b> ″ <sub>4,8</sub>             | $L(3, 1) \oplus L(1, 1)$ | 0                     | 0                     | 0                     |                                                 | >                     | $b_2 = 1$                                  | \$7,10              | 8 <sup>d</sup> 7,10                              |
| <b>ĝ</b> ″4,9                         | $L(3,1) \oplus L(1,1)$   |                       | >                     |                       | 0                                               | >                     | $b_{2} = 1$                                | 87,10               | 8 <sup>d</sup> 7,10                              |
| <b>ĝ</b> ″,10                         | $L(3, 1) \oplus L(1, 1)$ | 0                     | >                     |                       | 0                                               | >                     | $b_{2} = 1$                                | 87,10               | $\tilde{g}^{d}_{7,10}$                           |
| <b>Ĩ</b> 4,11                         | $L(3, 1) \oplus L(1, 1)$ |                       | 0                     | >                     | 0                                               | >                     | $b_2 = 1$                                  | 87,10               | $\hat{g}_{7,10}^{d}$                             |
| <b>ĝ</b> ″,12                         | $L(3,1) \oplus L(1,1)$   | 0                     | 0                     | >                     | 0                                               | >                     | $b_2 = 1$                                  | 87.10               | <b>g</b> <sup>d</sup> <sub>7,10</sub>            |
| §4,13                                 | $L(3, 1) \oplus L(1, 1)$ |                       | >                     | 0                     | 0                                               | >                     | $b_2 = 1$                                  | \$7.10              | 8 <sup>d</sup> 7,10                              |
| ĝ <sup>"</sup> ,14                    | $L(3, 1) \oplus L(1, 1)$ | 0                     | >                     | 0                     | 0                                               | >                     | $b_2 = 1$                                  | 87,10               | 87,10                                            |
| <b>Ĩ</b> ″,15                         | $L(3, 1) \oplus L(1, 1)$ |                       | 0                     | 0                     | 0                                               | >                     | $b_2 = 1$                                  | 87.10               | 8 <sup>d</sup> 7,10                              |
| <b>8</b> <sup>"</sup> 4,16            | $L(3, 1) \oplus L(1, 1)$ |                       | >                     | >                     |                                                 | 0                     | $a_3 = 1$                                  | 87,10               | 8 <sup>d</sup> 7,10                              |
| <b>8</b> ″4,17                        | $L(3, 1) \oplus L(1, 1)$ | 0                     | >                     | >                     |                                                 | 0                     | $a_3 = 1$                                  | \$7,10              | <b>g</b> <sup>d</sup> <sub>7,10</sub>            |
| <b>Ĩ</b> 4,18                         | $L(3, 1) \oplus L(1, 1)$ |                       | 0                     | >                     |                                                 | 0                     | $a_3 = 1$                                  | 87,10               | <b>8</b> <sup>d</sup><br><b>8</b> 7,10           |
| <b>8</b> <sup>"</sup> 4,19            | $L(3,1) \oplus L(1,1)$   | 0                     | 0                     | >                     |                                                 | 0                     | $a_3 = 1$                                  | 87,10               | $\hat{g}_{7,10}^{d}$                             |
| <b>Ĩ</b> 4,20                         | $L(3, 1) \oplus L(1, 1)$ |                       | >                     | 0                     | ≠ a <sub>1</sub>                                | 0                     | $a_2 = 1$                                  | 87,10               | $\hat{g}_{7,10}^{d}$                             |
| <b>Ĩ</b> <sup>"</sup> <sub>4,21</sub> | $L(3,1) \oplus L(1,1)$   |                       | >                     | 0                     | <i>a</i> 1                                      | 0                     | $a_2 = 1$                                  | \$8.7               | <b>g</b> <sup>d</sup> <sub>8,7</sub>             |
| <b>ğ</b> ″4,22                        | $L(3,1) \oplus L(1,1)$   | 0                     | >                     | 0                     | -                                               | 0                     | $a_2 = 1$                                  | 87,10               | $\hat{g}_{7,10}^{d}$                             |
| ĝ'4,1                                 | 4L(1, 1)                 |                       | 0                     | 0                     | $\neq a_1$                                      | 0                     | $a_1 = \pm 1$                              | 87,10               | $\bar{g}^{\rm d}_{7,10}$                         |
| ĝ'4.2                                 | 4L(1, 1)                 | (>)                   | 0                     | 0                     | <i>a</i> 1                                      | 0                     | $a_1 = \pm 1$                              | <b><i>Ĩ</i></b> 8,7 | $\tilde{g}_{8,7}^{d}$                            |
| <b>Ĩ</b> 4,23                         | $L(3,1) \oplus L(1,1)$   |                       | >                     | >                     | 0                                               | 0                     | $a_3 = 1$                                  | <b>8</b> 7,10       | $\tilde{g}^{d}_{7,10}$                           |
| <b>Ĩ</b> 4,24                         | $L(3,1)\oplus L(1,1)$    | 0                     | >                     | >                     | 0                                               | 0                     | $a_3 = 1$                                  | 87,10               | <b>g</b> <sup>d</sup> <sub>7,10</sub>            |
| 8 <sup>"</sup> 4,25                   | $L(3,1)\oplus L(1,1)$    |                       | 0                     | >                     | 0                                               | 0                     | $a_3 = 1$                                  | 87,10               | <b>8</b> <sup>d</sup> 7,10                       |
| 84,26                                 | $L(3,1)\oplus L(1,1)$    | 0                     | >                     | 0                     | 0                                               | 0                     | $a_2 = 1$                                  | 88,7                | $\tilde{g}_{8,7}^{d}$                            |
| <b>ẽ</b> '4,3                         | 4L(1, 1)                 | (>)                   | 0                     | 0                     | 0                                               | 0                     | $a_1 = \pm 1$                              | 80,7<br>87,10       | $\tilde{g}_{7,10}^{d}$<br>$\tilde{g}_{11,2}^{d}$ |
| 8'4,4                                 | 4L(1,1)                  | ົບ໌                   | 0                     | 0                     | 0                                               | 0                     | • -                                        | 8 10,1              | ĝ <sup>d</sup> .                                 |

**Table 4.** Classification of subalgebras of the form  $k_1 + a_1 p_1 + a_2 p_2 + a_3 p_3$ ,  $k_2 - a_2 p_1 + b_1 p_2 + b_2 p_3$ ,  $k_3 - a_3 p_1 - b_2 p_2$ , *m* under  $\tilde{G}_0$ ,  $\tilde{G}_0^d$  and  $\tilde{G}^d$ . No indication on the range of a parameter means  $\neq 0$ . Indication in brackets () stands for classification under  $\tilde{G}$  and  $\tilde{G}^d$ .

 $\tilde{\mathbf{G}}^{d}$  conjugacy classes of such algebras coincides with the list given in table 3, where the range of parameters is given in the last two subcolumns of column 6. We shall denote these subalgebras  $\tilde{\mathbf{g}}_{i,k}^{d} \equiv \tilde{\mathbf{g}}_{i,k}$ , with  $\tilde{\mathbf{g}}_{i,k}$  given in table 3. (2) Subalgebras of  $\tilde{\mathbf{g}}^{d}$  obtained from  $f_1 = \{d\}$ , which are splitting extensions of

(2) Subalgebras of  $\tilde{g}^{d}$  obtained from  $f_1 = \{d\}$ , which are splitting extensions of subalgebras of  $\tilde{g}$ . They are obtained by adding the element *d* to a subalgebra  $\tilde{g}_{i,k}$  of  $\tilde{g}$  (classified under  $\tilde{G}_0^d$ , or  $\tilde{G}^d$ ), which is an invariant subspace of *d*. We thus obtain algebras of the form  $d + \tilde{g}_{i,k}$ , where  $\tilde{g}_{i,k}$  is one of the subalgebras listed in table 3. In these bases given in table 3 the *d*-invariant subalgebras  $\tilde{g}_{i,k}$  are those which either involve no parameters (when classified under  $\tilde{G}_0$ ), or contain parameters relating the translations  $p_i$  only. Thus, e.g., algebra  $\tilde{g}_{4,14}$  is allowed, but  $\tilde{g}_{4,15}$  is forbidden, as are all subalgebras with basis elements of the type  $j_3 + ak_i + bp_j$ ,  $k_3 + at$ , t + am,  $k_i + bp_j$ , etc.

(3) Subalgebras of  $\tilde{g}^d$  obtained from  $f_1 = \{d\}$ , that are non-splitting extensions of subalgebras of  $\tilde{g}$ . They are obtained in the following manner.

(i) Take a subalgebra  $\tilde{g}_{i,k}$  from table 3 that is an invariant subspace of d (i.e. the same subalgebras that were used above in case 2).

(ii) Add to  $\tilde{g}_{i,k}$  a basis element of the form

$$d + a_i j_i + b_i k_i + c_i p_i + et + fm \equiv d + n$$
  $a_i, b_i, c_i, e, f \in \mathbb{R}$  (3.7)

such that

$$n \in [\operatorname{nor}_{\tilde{g}} \tilde{g}_{i,k}] / \tilde{g}_{i,k}. \tag{3.8}$$

The condition (3.8) ensures that  $(d+n) \stackrel{.}{+} \tilde{g}_{i,k}$  forms a Lie algebra and that d+n cannot be simplified by linear combinations with elements of  $\tilde{g}_{i,k}$ .

(iii) Classify the elements (3.7) into conjugacy classes under the action of the normaliser of  $\tilde{g}_{i,k}$  in the group  $\tilde{G}_0^d$  (or  $\tilde{G}^d$ ). Choose a representative of each conjugacy class for which at least one of the coefficients  $a_i, b_i, \ldots, f$  is non-zero (if all coefficients are zero, up to conjugacy, we re-obtain a splitting subalgebra). The results of this procedure can be stated quite simply: the basis element (3.7) must actually have the form

$$\tilde{d} = d + aj_3 + bm$$
 (a, b)  $\neq$  (0, 0) a, b  $\in \mathbb{R}$ . (3.9)

Indeed, terms of the form  $b_i k_i + c_i p_i + et$  can be removed by transformations in the Lie group generated by  $\{k, p, m\}$ . Terms of the form  $a_i j_i$  can be rotated into  $a j_3$ .

In table 5 we give a list of representatives of conjugacy classes of subalgebras  $\tilde{g}_{i,k}^d$  of the extended Galilei-similitude algebra  $\tilde{g}^d$ , that involve a dilation. A complete list of representatives of all conjugacy classes of subalgebras of  $\tilde{g}^d$  is obtained by merging tables 3 and 5 together. In the tables, e(3) denotes the Euclidean Lie algebra and sim(3) the similitude algebra of Euclidean 3-space  $(sim(3) \sim \{d, j, p\})$ .

|                                                                                 |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Range of parameter           |                |  |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------|--|
| Number                                                                          | Isomorphism class<br>and comments                                                                                                                                                                                                                     | Basis                                                                                                                                                                                                 | norgd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mathbf{\tilde{G}}_{0}^{d}$ | Ĝď             |  |
| d<br>12,1                                                                       | $\tilde{g}^{d}(3)$                                                                                                                                                                                                                                    | d; <b>j</b> , <b>k</b> , <b>p</b> , <i>t</i> , m                                                                                                                                                      | <i>§</i> <sup>d</sup> <sub>12,1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                |  |
| ;d<br>11,2                                                                      |                                                                                                                                                                                                                                                       | d; <b>j</b> , <b>k</b> , <b>p</b> , m                                                                                                                                                                 | $\tilde{g}_{11,2}^{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                |  |
| d<br>10,2                                                                       |                                                                                                                                                                                                                                                       | $d, j_3; k, p, t, m$                                                                                                                                                                                  | $\tilde{g}_{10,2}^{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                |  |
| d<br>9,2<br>d<br>9,3<br>d<br>9,4<br>d<br>9,5<br>d<br>9,6                        | $\begin{split} \tilde{g}_{d,19}^{d} & \oplus L(1,1) \\ \text{solv, } & \aleph = \tilde{g}_{8,3}^{d} \\ \text{solv, } & \aleph = \tilde{g}_{8,3}^{d} \\ \text{solv, } & \aleph = L(6,14;1) \oplus L(1,1) \\ \text{solv, } & \aleph = h(3) \end{split}$ | $ \{d; j, p, t\} \oplus \{m_i\}  d; t, k, p, m  d + aj_3; t, k, p, m  d, j_3; k_1, k_2, p, t, m  d, j_3; k, p, m $                                                                                    | <b>g</b> <sup>d</sup><br><b>g</b> <sup>d</sup><br><b>g</b> <sup>1</sup> 2,1<br><b>g</b> <sup>d</sup><br><b>g</b> <sup>1</sup> 10,2<br><b>g</b> <sup>d</sup><br><b>g</b> <sup>9</sup> ,5<br><b>g</b> <sup>9</sup> ,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>a</b> > 0                 | a > 0          |  |
| d<br>8,9<br>d<br>8,10<br>d<br>8,11<br>d<br>8,12<br>d<br>8,12<br>d<br>8,13       | $sim(3) \oplus L(1, 1)$<br>$sim(3) \oplus L(1, 1)$<br>$solv, NR = L(6, 14; 1) \oplus L(1, 1)$<br>$solv, NR = L(6, 14; 1) \oplus L(1, 1)$<br>solv, NR = h(3)                                                                                           | $\{d; j, k\} \oplus \{m; \} \\ \{d; j, p\} \oplus \{m; \} \\ d; t, k_1, k_2, p, m \\ d + aj_3; t, k_1, k_2, p, m \\ d; k, p, m $                                                                      | <b>Š</b> <sup>d</sup><br><b>Š</b> <sup>g</sup><br><b>Š</b> <sup>d</sup><br><b>Š</b> <sup>d</sup><br><b>Š</b> <sup>d</sup><br><b>Š</b> <sup>d</sup><br><b>Š</b> <sup>g</sup><br><b>Š</b> <sup>d</sup><br><b>Š</b> <sup>g</sup><br><b>Š</b> <sup>d</sup><br><b>Š</b> <sup>d</sup><br><b>Š</b> <sup>g</sup><br><b>Š</b> <sup>d</sup><br><b>Š</b> <sup>g</sup><br><b>Š</b> <sup>d</sup><br><b>Š</b> <sup>d</sup> <b>Š</b> <sup>d</sup><br><b>Š</b> | <i>a</i> > 0                 | <i>a</i> > 0   |  |
| 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5              | solv, NR = h(3)<br>solv, NR = L(4, 1) $\oplus$ 2L(1, 1)<br>solv, NR = L(5, 4) $\oplus$ L(1, 1)<br>$\sim \tilde{g}_{8,16}^d$<br>solv, NR = L(6, 14; 1)<br>non-solv<br>$\sim \tilde{g}_{8,19}^d$                                                        | $d + aj_{3}; k, p, m$<br>$d, j_{3}; t, k_{3}, p, m$<br>$d, j_{3}; k_{1}, p_{2}, m$<br>$d, j_{3}; k_{1}, k_{2}, p, m$<br>$d, j_{3}; t, k_{1}, k_{2}, p_{1}, p_{2}, m$<br>d; j, p, t<br>d + am; j, p, t | 8 11,2<br>8 9,6<br>8 8,15<br>6 8,15<br>6 8,16<br>8 8,16<br>8 8,17<br>8 9,5<br>6 9,5<br>6 9,2<br>8 9,2<br>8 9,2<br>8 9,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>a</i> > 0<br><i>a</i> > 0 | a > 0<br>a > 0 |  |
| d<br>7,19<br>d<br>7,20<br>d<br>7,21<br>d<br>7,22<br>d<br>7,23<br>d<br>7,23<br>d | $\tilde{g}_{6,39}^{d} \oplus L(1,1)$ solv, NR = L(4,1) $\oplus$ 2L(1,1)<br>solv, NR = L(4,1) $\oplus$ 2L(1,1)<br>solv, NR = L(5,4) $\oplus$ L(1,1)<br>$\sim \tilde{g}_{7,22}^{d}$ solv, NR = L(5,4) $\oplus$ L(1,1)                                   | $\{d, j_3; t, p\} \oplus \{m;\}\$<br>$d; t, k_3, p, m$<br>$d + aj_3; t, k_3, p, m$<br>$d; k_1, k_2, p, m$<br>$d; p_1, p_2, k, m$<br>$d + aj_3, k_1, k_2, p, m$                                        | 8<br>8<br>7,19<br>8<br>8,15<br>8<br>8,15<br>8<br>8,17<br>8<br>8,16<br>8<br>8,17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a > 0<br>a > 0               | a > 0<br>a > 0 |  |
| d<br>7,25                                                                       | ~8,24                                                                                                                                                                                                                                                 | $d + a_{j_3}; k, p_1, p_2, m$                                                                                                                                                                         | 88,17<br>88,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a > 0                        | a > 0          |  |

**Table 5.** Representative of  $\tilde{G}_{d}^{d}$  and  $\tilde{G}^{d}$  conjugacy classes of subalgebras of the extended Galilei-similitude algebra  $\tilde{g}^{d}$  involving a dilation.

| Table 5 | (continued) |
|---------|-------------|
|---------|-------------|

| Number            | Isomorphism class<br>and comments                                         |                                                                       |                                                   | Range of parameters                   |                          |
|-------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|---------------------------------------|--------------------------|
|                   |                                                                           | Basis                                                                 | norgi                                             | $\mathbf{\tilde{G}}_{0}^{\mathbf{d}}$ | $\mathbf{\tilde{G}}^{d}$ |
| 3<br>7,26         | solv, NR = L(6, 14; 1)                                                    | $d; t, k_1, k_2, p_1, p_2, m$                                         | ĝ <sup>d</sup><br>88,18                           |                                       |                          |
| 7,26<br>1<br>7.27 | solv, $NR = L(6, 14; 1)$                                                  | $d + aj_3; i, k_1, k_2, p_1, p_2, m$                                  | 88.18                                             | a > 0                                 | a > 0                    |
| ,27<br>1<br>7,28  | solv, NR = $L(3, 1) \oplus 2L(1, 1)$                                      | $d, j_3; k, p_3, m$                                                   | 8 <sup>d</sup> 7,28                               |                                       |                          |
| 7,28<br>3<br>7,29 | $\sim \hat{g}_{7,28}$                                                     | $d, j_3; p, k_3, m$                                                   | <b>8</b> <sup>d</sup> 7,29                        |                                       |                          |
| 7,29<br>3<br>7,30 | $s_{7,28}$ solv, NR = L(5, 4)                                             | $d, j_3; k_1, k_2, p_1, p_2, m$                                       | 87,30                                             |                                       |                          |
| ,30<br>,31        | non-solv                                                                  | d + am; j, k                                                          | 88,9                                              | a∈R                                   | <i>a</i> ≥ 0             |
| 7,31<br>1<br>7,32 | ~g <sup>d</sup> <sub>7,31</sub>                                           | d + am; j, p                                                          | 88,10                                             | $a \in \mathbb{R}$                    | a ≥ 0                    |
| 1                 | $L(3, 6) \oplus L(2, 1) \oplus L(1, 1)$                                   | $\{; j\} \oplus \{d; t\} \oplus \{m;\}$                               | g <sup>d</sup> <sub>6,25</sub>                    |                                       |                          |
| ,26               | $L(5, 48; 1; 0) \oplus L(1, 1)$                                           | $\{j_3, d; k\} \oplus \{m;\}$                                         | <b>g</b> <sup>d</sup> <sub>6,26</sub>             |                                       |                          |
| ,27               | $L(5, 48; 1; 0) \oplus L(1, 1)$                                           | $\{j_3, d; p\} \oplus \{m;\}$                                         | <b>g</b> <sup>d</sup> <sub>6,27</sub>             |                                       |                          |
| ,27<br>,28        | $L(5, 48; -1; 0) \oplus L(1, 1)$                                          | $\{j_3, d; k_1, k_2, p_3\} \oplus \{m;\}$                             | ĝ <sup>d</sup><br>86,28                           |                                       |                          |
| ,28               |                                                                           | $\{j_3, d; p_1, p_2, k_3\} \oplus \{m_i\}$                            | 86,28<br>86,29                                    |                                       |                          |
| ,29               | $L(5, 48; -1; 0) \oplus L(1, 1)$                                          | $\{d; p, t\} \oplus \{m;\}$                                           | 86,29<br>89,2                                     |                                       |                          |
| 1<br>5,30<br>1    | $L(5, 7; 1/2; 1/2; 1/2) \oplus L(1, 1)$                                   |                                                                       | 89,2<br>86,31                                     |                                       |                          |
| 1<br>5,31<br>1    | $L(5, 48; 2; 0) \oplus L(1, 1)$                                           | $\{j_3, d; p_1, p_2, t\} \oplus \{m_i\}$                              | 86,31<br>86,32                                    |                                       |                          |
| ,32               | $L(5, 40) \oplus L(1, 1)$                                                 | $\{d; k_3, p_3, t, m\} \oplus \{j_3;\}$                               |                                                   | - > 0                                 | a > 0                    |
| ,33               | $L(5, 10; 1/2, a/2, 1/2) \oplus L(1, 1)$                                  | $\{d+aj_3; p, t\} \oplus \{m;\}$                                      | 87,19                                             | a > 0                                 | <i>u</i> > 0             |
| 34                | solv, NR = $L(3, 1) \oplus 2L(1, 1)$                                      | $d; k, p_3, m$                                                        | 87,28                                             |                                       |                          |
| ,35               | $\sim \tilde{g}_{6,34}^{d}$                                               | $d; p, k_3, m$                                                        | 87,29                                             |                                       |                          |
| 1<br>5,36         | $\sim \hat{g}^{\mathrm{d}}_{6,34}$                                        | $d; k_1, k_2, p_1, p_3, m$                                            | 86,36                                             |                                       |                          |
| 1<br>5,37         | solv, NR = $L(4, 1) \oplus L(1, 1)$                                       | $d; k_2, p_1, p_2, l, m$                                              | $\tilde{g}_{6,37}^{d}$                            |                                       |                          |
| f<br>5,38         | solv, $NR = L(5, 4)$                                                      | $d; k_1, k_2, p_1, p_2, m$                                            | <b>8</b> <sup>d</sup> 7,30                        |                                       |                          |
| 1<br>5,39         | $\sim \tilde{g}_{6,38}^{d}$                                               | $d; k_1, k_2, p_2, p_1 + ap_3, m$                                     | 86,39                                             | a > 0                                 | a > 0                    |
| 1<br>5,40         | solv, NR = $4L(1, 1)$                                                     | $d, j_3; p, t$                                                        | 8 <sup>d</sup> 7,19                               |                                       |                          |
| 1<br>5,41         | $\sim \tilde{g}_{6,40}^{d}$                                               | $d+bm, j_3+am; p, t$                                                  | <b>g</b> <sup>d</sup> <sub>7,19</sub>             | a ≥ 0                                 | $a \ge 0$                |
|                   |                                                                           |                                                                       |                                                   | $b \neq 0$                            | b > 0                    |
| 42                | $-\hat{g}_{6,40}^{d}$                                                     | $d, j_3 + am, p, t$                                                   | 87,19                                             | a > 0                                 | a > 0                    |
| 1<br>5,43         | solv, NR = $L(3, 1) \oplus 2L(1, 1)$                                      | $d + a j_3; k, p_3, m$                                                | 87,28                                             | a > 0                                 | a > 0                    |
| 1<br>5,44         | $\sim \tilde{g}^{d}_{6,43}$                                               | $d+aj_3$ ; $p, k_3, m$                                                | 87,29                                             | a > 0                                 | a > 0                    |
| d<br>6,45         | solv, $NR = L(5, 4)$                                                      | $d + a j_3; k_1, k_2, p_1, p_2, m$                                    | $\hat{g}_{7,30}^{d}$                              | a > 0                                 | a > 0                    |
| d<br>5,43         | $L(3, 2; 1/2) \oplus 2L(1, 1)$                                            | $\{d; p_3, t\} \oplus \{j_3;\} \oplus \{m;\}$                         | 8 <sup>d</sup> 5,43                               |                                       |                          |
| 3<br>5,44         | $L(3, 6) \oplus 2L(1, 1)$                                                 | $\{; j\} \oplus \{m;\} \oplus \{d;\}$                                 | gd 5,44                                           |                                       |                          |
| 1<br>5,45         | $L(3, 6) \oplus L(2, 1)$                                                  | $\{; j\} \oplus \{d + am; t\}$                                        | gd,25                                             | $a \in \mathbb{R}$                    | <i>a</i> ≥ 0             |
| 1<br>5,46         | $L(4, 2; 1; 1) \oplus L(1, 1)$                                            | $\{d; k\} \oplus \{m;\}$                                              | ĝ <sup>d</sup> 8,9                                |                                       |                          |
| 47                | $L(4, 2; 1; 1) \oplus L(1, 1)$                                            | $\{d; p\} \oplus \{m;\}$                                              | 88,10                                             |                                       |                          |
| 1<br>5,48         | $L(4, 2; 1; -1) \oplus L(1, 1)$                                           | $\{d; k_1, k_2, p_3\} \oplus \{m;\}$                                  | \$6,28                                            |                                       |                          |
| 1<br>5,49         | $L(4, 2; 1; -1) \oplus L(1, 1)$                                           | $\{d; p_1, p_2, k_3\} \oplus \{m;\}$                                  | 86,29                                             |                                       |                          |
| 5,50              | $L(4, 2; 1/2; 1/2) \oplus L(1, 1)$                                        | $\{d; p_1, p_2, t\} \oplus \{m;\}$                                    | 86,29<br>86,31                                    |                                       |                          |
| ,50               | $L(4, 5; 1/2; 1/2) \oplus L(1, 1)$<br>$L(4, 5; 1/a; 1/a) \oplus L(1, 1)$  | $\{d, p_1, p_2, i\} \oplus \{m, j\}$ $\{d + aj_3; k\} \oplus \{m; \}$ | 86,31<br>86,26                                    | a > 0                                 | a > 0                    |
| ,52               |                                                                           | $\{d + aj_3; p\} \oplus \{m;\}$                                       | 86,26<br>2 <sup>d</sup>                           |                                       |                          |
| ,52<br>,53        | $L(4, 5; 1/a; 1/a) \oplus L(1, 1)$<br>$L(4, 5; 1/a; -1/a) \oplus L(1, 1)$ |                                                                       | 86,27<br>2 <sup>d</sup>                           | a > 0                                 | a > 0                    |
|                   |                                                                           | $\{d+aj_3; k_1, k_2, p_3\} \oplus \{m;\}$                             |                                                   | a > 0                                 | a > 0                    |
| ,54               | $L(4, 5; 1/a; -1/a) \oplus L(1, 1)$                                       | $\{d + aj_3; p_1, p_2, k_3\} \oplus \{m_i\}$                          |                                                   | a > 0                                 | a > 0                    |
| .55               | $L(4, 5; 2/a; 1/a) \oplus L(1, 1)$                                        | $\{d + aj_3; p_1, p_2, t\} \oplus \{m_i\}$                            | 86,31                                             | a > 0                                 | a > 0                    |
| 1<br>5,56<br>1    | $L(4,8) \oplus L(1,1)$                                                    | $\{d; k_3, p_3, m\} \oplus \{j_3;\}$                                  | 85,56                                             |                                       |                          |
| ,57               | $L(4, 13) \oplus L(1, 1)$                                                 | $\{j_3, d; k_1, k_2\} \oplus \{m\}$                                   | <b><i>ğ</i></b> <sup>d</sup> 5,57                 |                                       |                          |
| ,58               | $L(4, 13) \oplus L(1, 1)$                                                 | $\{j_3, d; p_1, p_2\} \oplus \{m_i\}$                                 | 8 5,58                                            |                                       |                          |
| 1,59              | L(5, 7; 1/2; 1/2; 1/2)                                                    | d + am; p, t                                                          | <b><i>ĝ</i></b> <sup>d</sup> <sub>9,2</sub>       | $a \in \mathbb{R}$                    | a ≥ 0                    |
| ,60               | L(5,10; 1/2; a/2; 1/2)                                                    | $d + aj_3 + bm; p, t$                                                 | $\tilde{g}_{7,19}^{d}$                            | <i>a</i> > 0                          | a > 0                    |
|                   |                                                                           |                                                                       |                                                   | $b\in \mathbf{R}$                     | $b \ge 0$                |
| ,61               | L(5, 21; 1)                                                               | $d; k_1, k_2, p_1 + ap_3, m$                                          | 8 <sup>d</sup> 5,61                               | $a \ge 0$                             | a ≥ 0                    |
| ,62               | L(5, 21; 1)                                                               | $d; k_3, p_1, p_3 + ap_2, m$                                          | 85.62                                             | <i>a</i> ≥ 0                          | a ≥ 0                    |
| 63                | L(5, 40)                                                                  | $d + a j_3, k_3, p_3, l, m$                                           | 86 32                                             | a > 0                                 | a > 0                    |
| ,64               | L(5, 40)                                                                  | $d; k_3, p_3, l, m$                                                   | 86.32                                             |                                       |                          |
| ,65               | L(5, 48; 1; 0)                                                            | $j_3 + am, d + bm; k$                                                 | 86,26                                             | <i>a</i> ≥ 0                          | <i>a</i> ≥ 0             |
|                   |                                                                           |                                                                       |                                                   | b∈R                                   | $b \ge 0$                |
| ,66               | L(5, 48; 1; 0)                                                            | $j_3 + am, d + bm; p$                                                 | 8 <sup>d</sup> ,27                                | a ≥ 0                                 | a ≥ 0                    |
|                   |                                                                           |                                                                       |                                                   | b∈R                                   | <i>b</i> ≥0              |
| ,67               | L(5, 48; -1, 0)                                                           | $j_3 + am, d + bm; k_3, p_1, p_2$                                     | <b>g</b> <sup>d</sup><br><b>g</b> <sub>6,29</sub> | <i>a</i> ≥ 0                          | a≥0                      |
| - ,• .            |                                                                           | -> -> -> -> -> -> -> -> -> -> -> -> -> -                              | 00,29                                             | b∈R                                   | b≥0                      |

| Number                                  | Isomorphism class<br>and comments                              | Basis                                                                                                                                                                      | norgd                                                                                   | Range of parameters |                        |
|-----------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------|------------------------|
|                                         |                                                                |                                                                                                                                                                            |                                                                                         | Ĝ <sup>d</sup>      | Ĝď                     |
| <b><i>ĝ</i></b> <sup>d</sup> 5,68       | L(5, 48; -1; 0)                                                | $j_3 + am, d + bm; p_3, k_1, k_2$                                                                                                                                          | <b><i>ž</i></b> <sup>d</sup> <sub>6,28</sub>                                            | <b>a</b> ≥ 0        | <i>a</i> ≥ 0           |
|                                         |                                                                |                                                                                                                                                                            |                                                                                         | $b \in \mathbb{R}$  | $b \ge 0$              |
| <b>g</b> d<br>5,69                      | L(5, 48; 2; 0)                                                 | $j_3 + am, d + bm; p_1, p_2, t$                                                                                                                                            | $\tilde{g}_{6,31}^{d}$                                                                  | $a \ge 0$           | a ≥ 0                  |
|                                         |                                                                |                                                                                                                                                                            |                                                                                         | $b \in \mathbb{R}$  | $b \ge 0$              |
| g <sup>d</sup><br>4,56                  | $L(2, 1) \oplus 2L(1, 1)$                                      | $\{d; k_3\} \oplus \{j_3;\} \oplus \{m;\}$                                                                                                                                 | ĝ <sup>d</sup><br>84.56                                                                 |                     |                        |
| <b>g</b> <sup>d</sup><br>4,57           | $L(2,1) \oplus 2L(1,1)$                                        | $\{d; t\} \oplus \{j_3;\} \oplus \{m;\}$                                                                                                                                   | 84,57                                                                                   |                     |                        |
| 3 <sup>d</sup><br>4,58                  | $L(2,1) \oplus 2L(1,1)$                                        | $\{d; p_3\} \oplus \{j_3;\} \oplus \{m;\}$                                                                                                                                 | 84,58                                                                                   |                     |                        |
| d<br>4,59                               | $L(3, 2; 1) \oplus L(1, 1)$                                    | $\{d; k_1, k_2\} \oplus \{m\}$                                                                                                                                             | <b>8</b> <sup>d</sup> 5,59                                                              |                     |                        |
| <b>š</b> 4,60                           | $L(3, 2; 1) \oplus L(1, 1)$                                    | $\{d; p_1, p_2\} \oplus \{m\}$                                                                                                                                             | <b><i>ã</i></b> <sup>d</sup><br><b><i>š</i>.60</b>                                      |                     |                        |
| ₹d<br>\$4,61                            | $L(3, 2; -1) \oplus L(1, 1)$                                   | $\{d; k_3, p_1\} \oplus \{m\}$                                                                                                                                             | <b><i>ã</i></b> <sup>d</sup><br><b><i>ã</i></b> <sup>d</sup>                            |                     |                        |
| 34,62                                   | $L(3, 2, 1/2) \oplus L(1, 1)$                                  | $\{d+aj_3; t, p_3\} \oplus \{m;\}$                                                                                                                                         | <b>g</b> <sup>d</sup><br><b>g</b> <sup>d</sup><br><b>g</b> <sup>d</sup><br><b>5</b> ,43 | $a \ge 0$           | $a \ge 0$              |
| rd<br>64,63                             | $L(3, 2; 1/2) \oplus L(1, 1)$                                  | $\{d + bm; t, p_3\} \oplus \{j_3 + am;\}$                                                                                                                                  |                                                                                         | a ≥ 0               | $a \ge 0$              |
| 54,03                                   | 2(3,2,1,2,3) 2(3,1)                                            | $[a + cm; i, p_3] \oplus (j_3 + am;)$                                                                                                                                      | 8 5,43                                                                                  | b∈R                 | $b \ge 0$              |
| ğd<br>84,64                             | $L(3, 4; 1/a) \oplus L(1, 1)$                                  | $\{d + aj_3; k_1, k_2\} \oplus \{m_i\}$                                                                                                                                    | 8 5,57                                                                                  | a > 0               | a > 0                  |
| 54,64<br>\$d<br>\$4,65                  | $L(3, 4, 1/a) \oplus L(1, 1)$<br>$L(3, 4, 1/a) \oplus L(1, 1)$ | $\{d + aj_3; p_1, p_2\} \oplus \{m_i\}$                                                                                                                                    | 85,57<br>85,58                                                                          | a > 0<br>a > 0      | a > 0<br>a > 0         |
| 54,65<br>54,66                          | $L(3, 4, 1/2) \oplus L(1, 1)$<br>$L(3, 6) \oplus L(1, 1)$      | $\{ \mathbf{i} \neq \mathbf{i} \mathbf{j}_3, \mathbf{p}_1, \mathbf{p}_2 \} \oplus \{ \mathbf{m}_1 \}$ $\{ \mathbf{j} \} \oplus \{ \mathbf{d} + \mathbf{a} \mathbf{m}_1 \}$ | 85,58<br>85,44                                                                          | u ≥0<br>a∈R         | $a \ge 0$              |
| 54,66<br>7d<br>54,67                    | L(4, 2; 1; 1)                                                  | d + am; k                                                                                                                                                                  | 85,44<br>88,9                                                                           | a e R               | $a \ge 0$<br>$a \ge 0$ |
| 54,67<br>5 <sup>d</sup><br>54,68        |                                                                |                                                                                                                                                                            | 88,9<br>2d                                                                              |                     |                        |
| 54,68<br>zd                             | L(4, 2; 1; 1)                                                  | d + am; p                                                                                                                                                                  | $\hat{g}_{8,10}^{d}$                                                                    | $a \in \mathbb{R}$  | $a \ge 0$              |
| gd<br>gd<br>gd<br>gd<br>gd<br>4,70      | L(4, 2; 1; -1)                                                 | $d + am; k_1, k_2, p_3$                                                                                                                                                    | $\tilde{g}_{6,28}^{d}$                                                                  | $a \in \mathbb{R}$  | $a \ge 0$              |
| 54,70<br>≝d                             | L(4, 2; 1; -1)                                                 | $d+am; p_1, p_2, k_3$                                                                                                                                                      | gd<br>6,29                                                                              | $a \in \mathbb{R}$  | a ≥ 0                  |
| rd<br>84,71<br>≁d                       | L(4, 2; 1/2; 1/2)                                              | $d+am; p_1, p_2, t$                                                                                                                                                        | 86,31                                                                                   | $a \in \mathbb{R}$  | $a \ge 0$              |
| <b>3</b> <sup>d</sup> ,72               | L(4, 5; 1/a; 1/a)                                              | $d + aj_3 + bm; k$                                                                                                                                                         | $\hat{g}_{6,26}^{d}$                                                                    | a > 0               | a > 0                  |
| - d                                     |                                                                |                                                                                                                                                                            |                                                                                         | $b \in \mathbb{R}$  | $b \ge 0$              |
| d<br>4,73                               | L(4, 5; 1/a; 1/a)                                              | $d + aj_3 + bm; p$                                                                                                                                                         | <i>ã</i> <sup>d</sup> ,27                                                               | a > 0               | a > 0                  |
|                                         |                                                                |                                                                                                                                                                            |                                                                                         | $b\in \mathbb{R}$   | $b \ge 0$              |
| <b>Ž</b> <sup>d</sup> 4,74              | L(4, 5; 1/a; -1/a)                                             | $d + aj_3 + bm; k_1, k_2, p_3$                                                                                                                                             | $\tilde{g}_{6,28}^{d}$                                                                  | a > 0               | a > 0                  |
|                                         |                                                                |                                                                                                                                                                            |                                                                                         | $b\in \mathbb{R}$   | $b \ge 0$              |
| $\hat{g}_{4,75}^{d}$ L(4, 5; 1/a; -1/a) | L(4, 5; 1/a; -1/a)                                             | $d + aj_3 + bm; p_1, p_2, k_3$                                                                                                                                             | $\tilde{g}_{6,29}^{d}$                                                                  | a > 0               | a > 0                  |
|                                         |                                                                |                                                                                                                                                                            |                                                                                         | $b\in \mathbb{R}$   | $b \ge 0$              |
| g <sup>d</sup> 4,76                     | L(4, 5; 2/a; 1/a)                                              | $d + aj_3 + bm; p_1, p_2, t$                                                                                                                                               | $\hat{g}_{6,31}^{d}$                                                                    | a > 0               | a > 0                  |
|                                         |                                                                |                                                                                                                                                                            |                                                                                         | $b \in \mathbb{R}$  | $b \ge 0$              |
| 8 <sup>d</sup> 4,77                     | L(4,8)                                                         | $d; k_3, p_3, m$                                                                                                                                                           | $\tilde{g}_{5,56}^{d}$                                                                  |                     |                        |
| 2d 78                                   | L(4,8)                                                         | $d; k_3, p_3 + a p_1, m$                                                                                                                                                   | <b><i>ĝ</i></b> <sup>d</sup> <sub>4,77</sub>                                            | a > 0               | a > 0                  |
| 2d 70                                   | L(4, 8)                                                        | $d + a j_3; k_3, p_3, m$                                                                                                                                                   | <b>g</b> <sup>d</sup> 5,56                                                              | a > 0               | <i>a</i> > 0           |
| d<br>4,80                               | L(4, 13)                                                       | $d + bm, j_3 + am; k_1, k_2$                                                                                                                                               | 8 <sup>d</sup> 5,57                                                                     | <i>a</i> ≥ 0        | <i>a</i> ≥ 0           |
| ,50                                     | · · · ·                                                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                    | 00,07                                                                                   | $b \in \mathbb{R}$  | b≥0                    |
| 3d<br>4,81                              | L(4, 13)                                                       | $d + bm, j_3 + am; p_1, p_2$                                                                                                                                               | <b>Ž</b> <sup>d</sup> 5,58                                                              | <i>a</i> ≥ 0        | <i>a</i> ≥ 0           |
| 04,81                                   | 2(1,10)                                                        | <i>a i cm</i> , <i>y</i> , <i>i am</i> , <i>p</i> <sub>1</sub> , <i>p</i> <sub>2</sub>                                                                                     | 80,08                                                                                   | b∈R                 | <b>b</b> ≥0            |
| d<br>3,53                               | 3L(1,1)                                                        | $\{d;\}\oplus\{j_3;\}\oplus\{m;\}$                                                                                                                                         | $\hat{g}_{3,53}^{d}$                                                                    |                     |                        |
| 3,53<br>d<br>3,54                       |                                                                |                                                                                                                                                                            | 83,53<br>#d                                                                             | a <b>&gt;</b> 0     | 0.20                   |
| \$3,54                                  | $L(2,1)\oplus L(1,1)$                                          | $\{d+bm; k_3\} \oplus \{j_3+am;\}$                                                                                                                                         | <b><i>ĝ</i></b> <sup>d</sup> 4,56                                                       | a≥0<br>b⊂®          | $a \ge 0$              |
| d<br>3,55                               |                                                                | (d) ben d'O(: ) = )                                                                                                                                                        | <u>-</u> d                                                                              | b∈R                 | $b \ge 0$              |
| 3,55                                    | $L(2,1)\oplus L(1,1)$                                          | $\{d+bm;l\}\oplus\{j_3+am\}$                                                                                                                                               | $\bar{g}_{4,57}^{d}$                                                                    | a≥0                 | a≥0                    |
| *d                                      |                                                                | / · · · · · · · · · · ·                                                                                                                                                    | •d                                                                                      | $b \in \mathbb{R}$  | $b \ge 0$              |
| d<br>3,56                               | $L(2, 1) \oplus L(1, 1)$                                       | $\{d+bm; p_3\} \oplus \{j_3+am;\}$                                                                                                                                         | <b>Ž</b> <sup>d</sup> 4,58                                                              | a ≥ 0               | a ≥ 0                  |
| •d                                      |                                                                |                                                                                                                                                                            | ed.                                                                                     | $b \in \mathbb{R}$  | $b \ge 0$              |
| ed<br>3,57                              | $L(2,1)\oplus L(1,1)$                                          | $\{d+aj_3; k_3\} \oplus \{m;\}$                                                                                                                                            | 84,56                                                                                   | $a \ge 0$           | $a \ge 0$              |
| 3,58                                    | $L(2,1) \oplus L(1,1)$                                         | $\{d+aj_3; t\} \oplus \{m\}$                                                                                                                                               | <b>g</b> <sup>d</sup> <sub>4,57</sub>                                                   | $a \ge 0$           | a ≥ 0                  |
| d<br>3,59                               | $L(2,1) \oplus L(1,1)$                                         | $\{d+aj_3; p_3\} \oplus \{m;\}$                                                                                                                                            | <b>Ž</b> <sup>d</sup> ,58                                                               | <i>a</i> ≥ 0        | <i>a</i> ≥ 0           |
| d<br>3,60<br>d<br>3,61                  | L(3, 2; 1)                                                     | $d + am; k_1, k_2$                                                                                                                                                         | 85,57                                                                                   | $a \in \mathbb{R}$  | <i>a</i> ≥ 0           |
| 3,61                                    | L(3, 2; 1)                                                     | $d+am; p_1, p_2$                                                                                                                                                           | <b>8</b> 5.58                                                                           | $a \in \mathbb{R}$  | <i>a</i> ≥ 0           |
| d<br>3,62                               | L(3, 2; -1)                                                    | $d + am; k_3, p_1$                                                                                                                                                         | $\tilde{g}_{4,61}^{d}$<br>$\tilde{g}_{5,43}^{d}$                                        | $a \in \mathbb{R}$  | <i>a</i> ≥ 0           |
| d<br>3,63                               | L(3, 2; 1/2)                                                   | $d + aj_3 + bm; t, p_3$                                                                                                                                                    | $\tilde{g}_{5,43}^{d}$                                                                  | a > 0               | <i>a</i> > 0           |
|                                         |                                                                |                                                                                                                                                                            |                                                                                         | $b \in \mathbb{R}$  | $b \ge 0$              |
| d<br>3,64                               | L(3, 2; 1/2)                                                   | $d + am; t, p_3$                                                                                                                                                           | g <sup>d</sup><br>5,43                                                                  | $a \in \mathbb{R}$  | a ≥ 0                  |
| d<br>3,65                               | L(3, 4; 1/a)                                                   | $d + aj_3 + bm; k_1, k_2$                                                                                                                                                  | 8 5,57                                                                                  | a > 0               | a > 0                  |
|                                         |                                                                | -                                                                                                                                                                          |                                                                                         | $b \in \mathbb{R}$  | $b \ge 0$              |
| 3,66                                    | L(3, 4; 1/a)                                                   | $d + aj_3 + bm; p_1, p_2$                                                                                                                                                  | ã 5,58                                                                                  | <i>a</i> > 0        | <i>a</i> > 0           |
|                                         |                                                                |                                                                                                                                                                            |                                                                                         | $b \in \mathbb{R}$  | <b>b</b> ≥0            |

| Number                                                                     | Isomorphism class<br>and comments | Basis                              | norg <sup>d</sup>                                                          | Range of parameters          |              |
|----------------------------------------------------------------------------|-----------------------------------|------------------------------------|----------------------------------------------------------------------------|------------------------------|--------------|
|                                                                            |                                   |                                    |                                                                            | $\mathbf{\tilde{G}}_{0}^{d}$ | Ğď           |
| $\vec{g}_{2,28}^{d}$ 2L(1,1)                                               | 2L(1, 1)                          | $\{j_3 + am;\} \oplus \{d + bm;\}$ | <b>g</b> <sup>d</sup> 3,53                                                 | <i>a</i> ≥ 0                 | <i>a</i> ≥ 0 |
|                                                                            | (-,-,                             |                                    |                                                                            | b∈R                          | $b \ge 0$    |
| $\tilde{g}_{2,29}^{d}$                                                     | 2L(1,1)                           | $\{d+aj_3\} \oplus \{m_i\}$        | $\tilde{g}_{3,53}^{d}$<br>$\tilde{g}_{5,44}^{d}$<br>$\tilde{g}_{4,56}^{d}$ | a > 0                        | a > 0        |
| $\tilde{g}_{2,29}^{d}$<br>$\tilde{g}_{2,30}^{d}$<br>$\tilde{g}_{2,31}^{d}$ | 2L(1,1)                           | $\{d_i\} \oplus \{m_i\}$           | ĝ <sup>d</sup><br>85.44                                                    |                              |              |
| <b>d</b><br><b>g</b> <sub>2,31</sub>                                       | L(2, 1)                           | $d + aj_3 + bm; k_3$               | gd 4.56                                                                    | a > 0                        | a > 0        |
| 02,31                                                                      |                                   |                                    |                                                                            | $b \in \mathbb{R}$           | $b \ge 0$    |
| 8 2 32                                                                     | L(2, 1)                           | $d + am; k_3$                      | <b>ĝ</b> <sup>d</sup> 4,56<br><b>ĝ</b> <sup>d</sup> 4,55                   | $a \in \mathbb{R}$           | a ≥ 0        |
| d<br>2,32<br>2,33                                                          | L(2, 1)                           | $d + aj_3 + bm; t$                 | 84.55                                                                      | <i>a</i> ≥ 0                 | a > 0        |
|                                                                            |                                   |                                    |                                                                            | $b \in \mathbb{R}$           | $b \ge 0$    |
| 2 34                                                                       | L(2, 1)                           | d + am; t                          | ĝ <sup>d</sup><br>ĝ <sup>d</sup><br>8 <sup>d</sup> 4,58                    | $a \in \mathbb{R}$           | a ≥ 0        |
| $ \tilde{g}_{2,34}^{d} = L(2,1) $ $ \tilde{g}_{2,35}^{d} = L(2,1) $        |                                   | $d + aj_3 + bm; p_3$               | $\bar{g}_{4.58}^{d}$                                                       | a > 0                        | a > 0        |
|                                                                            |                                   |                                    |                                                                            | $b\in \mathbb{R}$            | b≥0          |
| g <sup>d</sup> 2,36                                                        | L(2,1)                            | $d + am; p_3$                      | $\hat{g}_{4,58}^{d}$                                                       | $a \in \mathbb{R}$           | <i>a</i> ≥ 0 |
| $\tilde{g}_{1,13}^{d}$                                                     | L(1, 1)                           | $d+aj_3+bm;$                       | <b>ğ</b> <sup>d</sup> 3,53                                                 | a > 0                        | <i>a</i> > 0 |
|                                                                            |                                   |                                    |                                                                            | $b \in \mathbb{R}$           | $b \ge 0$    |
| 8 <sup>d</sup>                                                             | L(1,1)                            | d + am;                            | <b>g</b> <sup>d</sup> 5,43                                                 | $a \in \mathbb{R}$           | a ≥ 0        |

Table 5. (continued)

#### 4. Conclusions

The results of this article can be summarised as follows. Any subalgebra of the extended Galilei algebra  $\tilde{g}(3)$  is conjugated under the group of inner automorphisms to precisely one subalgebra in the list of table 3. Any subalgebra of the extended Galilei-similitude algebra is conjugated to precisely one subalgebra in the lists of table 3, or table 5.

The immediate application of this subgroup classification will be to obtain group invariant solutions of the GNLSE (1.1). A different application concerns the question of symmetry breaking for equation (1.1). Thus, for each subgroup, we can find the most general second-order equation, invariant under this subgroup. In general, there will be equations that describe more general interactions than (1.1) but reduce to (1.1) when these interaction terms are set equal to zero.

#### Acknowledgments

The work on this project was partially supported by research grants from NSERC of Canada and the FCAR du Gouvernement du Québec. One of the authors (LG) thanks the FCAR du Gouvernement du Québec for a doctoral fellowship. We thank D Rand for performing numerous computer calculations that aided in the identification of the isomorphy classes of subalgebras in tables 3 and 5.

### References

- [1] Hasegawa A and Kodama Y 1982 Opt. Lett. 7 285; 1981 Proc. IEEE 69 1145
- [2] Turner J G and Boyd J J M 1979 J. Plasma Phys. 22 121
- [3] Martina L 1986 Preprint Montréal CRM-1408
- [4] Landau L D and Lifshitz E M 1980 Statistical Physics (Oxford: Pergamon)

- [5] Davydov A S 1984 Solitons in Molecular Systems (Kiev: Naukova Dumka) (in Russian) Paul P, Chatterjee R, Tuszynski J A and Fritz O G 1983 J. Theor. Biol. 104 169
- [6] Pushkarov Kh I, Pushkarov D I and Tomov I V 1979 Opt. Quantum Electron. 11 471
- [7] Cowan S, Enns R H, Rangnekar S S and Sanghera S S 1986 Can. J. Phys. 64 311
- [8] Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia:SIAM)
- [9] Calogero F and Degasperis A 1982 Spectral Transform and Solitons vol 1 (Amsterdam: North-Holland)
- [10] Lie S 1891 Vorlesungen über Differentialgleichungen mit Bekannten Infinitesimalen Transformationen, (Leipzig: Teubner)
- [11] Olver P J 1986 Applications of Lie Groups to Differential Equations (Berlin: Springer)
- [12] Bluman G W and Cole J D 1974 Similarity Methods for Differential Equations (Berlin: Springer)
- [13] Ovsiannikov L V 1982 Group Analysis of Differential Equations (New York: Academic)
- [14] Winternitz P 1983 Nonlinear Phenomena (Lecture Notes in Physics 189) (Berlin: Springer) p 263
- [15] Champagne B and Winternitz P 1985 Preprint Montréal CRM-1278
- [16] Schwartz F 1985 Computing 34 91
- [17] Patera J, Winternitz P and Zassenhaus H 1975 J. Math. Phys. 16 1597
- [18] Patera J, Winternitz P and Zassenhaus H 1975 J. Math. Phys. 16 1615
- [19] Patera J, Winternitz P and Zassenhaus H 1976 J. Math. Phys. 17 717
- [20] Patera J, Sharp R T, Winternitz P and Zassenhaus H 1976 J. Math. Phys. 17 977; 1977 J. Math. Phys. 18 2259
- [21] Boyer C P, Sharp R T and Winternitz P 1976 J. Math. Phys. 17 1439
- [22] Burdet G, Patera J, Perrin M and Winternitz P 1978 Ann. Sci. Math. Qué. 2 81; 1978 J. Math. Phys. 19 1758
- [23] Ince E L 1956 Ordinary Differential Equations (New York: Dover)
- [24] Ablowitz M J, Ramani A and Segur H 1980 J. Math. Phys. 21 715
- [25] Rand D and Winternitz P 1986 Comput. Phys. Commun. 42 359
- [26] Bureau F J 1972 Ann. Mat. Pura Appl. IV 41 164
- [27] Grundland A M, Harnad J and Winternitz P 1984 J. Math. Phys. 25 791
- [28] Winternitz P, Grundland A M and Tuszynski J 1987 J. Math. Phys. 28 2194
- [29] Grundland A M, Tuszynski J and Winternitz P 1987 Phys. Lett. 119A 340
- [30] David D, Kamran N, Levi D and Winternitz P 1985 Phys. Rev. Lett. 55 2111; 1986 J. Math. Phys. 27 1225
- [31] David D, Levi D and Winternitz P 1986 Phys. Lett. 118A 390
- [32] Champagne B and Winternitz P 1985 Preprint Montréal CRM-1414
- [33] Leo R A, Martina L and Soliani G 1986 J. Math. Phys. 27 2623
- [34] Dorizzi B, Grammaticos B, Ramani A and Winternitz P 1986 J. Math. Phys. 27 2848
- [35] Sorba P 1976 J. Math. Phys. 17 941
- [36] Jacobson N 1979 Lie Algebras (New York: Dover)
- [37] Levy-Leblond J M 1974 Group Theory and its Applications vol 2, ed E Loebl (New York: Academic)
- [38] Voisin J 1965 J. Math. Phys. 6 1519, 1822
- [39] Gagnon L 1987 Preprint Montréal CRM-1478
- [40] Mubarakzyanov G M 1963 Izv. Vyssh. Uchebn. Zaved. Mat. no 1 114; no 3 99; no 4 104
- [41] Morozov V V 1958 Izv. Vyssh. Uchebn. Zaved. Mat. no 4 161
- [42] Patera J, Sharp R T, Winternitz P and Zassenhaus H 1976 J. Math. Phys. 17 986
- [43] Rand D, Winternitz P and Zassenhaus H 1988 Linear Algebra Appl. to be published
- [44] Rand D, Winternitz P and Zassenhaus H 1988 Linear Algebra Appl. to be published