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J .  Phys. A: Math. Gen. 21 (1988) 1493-1511. Printed in the U K  

Lie symmetries of a generalised non-linear Schrodinger 
equation: I. The symmetry group and its subgroups 

L Gagnon and P Winternitz 
Centre de Recherches Mathematiques, Universite de Montreal, C P  6128, Succursale A, 
Montreal, Quebec H3C 357, Canada 

Received 6 November 1987 

Abstract. The symmetry group of the generalised non-linear Schrodinger equation i$, + 
A$ = a,$ + all$I2$ + a,/$I41L in three space dimensions is shpwn to be the extended Galilei 
group G(3) ,  for a l a 2  $0,  and the Galil$-similitud_e group Gd(3)  (including a dilation) for 
a ,  = 0 or a, = 0. All Lie subgroups of G(3)  and Gd(3)  are found. They will be used in a 
subsequent paper to obtain group invariant solutions of the equation. 

1. Introduction 

This study is devoted to a group theoretical investigation of a generalised nonlinear 
Schrodinger equation (GNLSE) in 3 + 1 dimensions, namely -- 

iCcIr+A+ = G++~,I+I ’ IcI+ a21+14+ 

+ = +(x, y ,  z, f ) E c a, E R i = l , 2 , 3  ( a , , a , ) f ( O , O )  
(1.1) 

where A is the three-dimensional Laplace operator in Euclidean 3-space and a, are 
constanls. This type of non-linear partial differential equation arises in many physical 
applications, where it describes wave propagation in non-linear and dispersive media. 
For instance, it can be obtained in non-linear optics [ l ]  when the wavenumber k of 
an electromagnetic wave is expanded in a power series in terms of the electric field 
E ( r ,  t )  = +(r ,  t )  exp(ik. r ) .  Similar equations occur in the description of the elec- 
tromagnetic heating of a plasma [2,3], or in the propagation of water waves in certain 
regimes. Other applications concern the Landau-Ginzburg theory of phase transi- 
tions [4], or studies of various biological systems [5]. 

Previous studies of equation (1.1) were, to our knowledge, restricted to the one- 
dimensional case (i.e. A=d2/d:). The equation was shown to have solitary wave 
solutions [6]. Numerical studies indicate that these are not solitons, i.e. that two solitary 
waves of (1.1) interact inelastically [7]. 

The GNLSE does not belong to the class of integrable non-linear evolution 
equations [8,9] even in 1 + 1 dimensions, still less in 3 + 1. Thus, no Lax pair exists 
and no linear techniques are available for solving this equation. Exact solitons and 
multisolitons are hence not to be expected. 

Our aim is to apply the techniques of Lie group theory to this equation in order 
to obtain particular exact solutions and to study their properties. The method consists 
of several steps. 

( i )  Find the Lie group G of point transformations 

2 = A&x, ICI) 4 = q x ,  *) (1.2) 
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leaving the equation invariant. In other words, the transformations (1.2) are such that 
$(f) is a solution, whenever +(x) is one. 

(i i)  Find all subgroups of G having orbits of codimension k (1 s k s 3) in  the space 
of independent variables x = (x, y ,  z, 1 ) .  

(iii) Find the invariants of the above subgroups in the space of dependent and 
independent variables and express the dependent variables in terms of them. In the 
case under consideration this provides expressions of the type 

where a and 6, ( i  = 1, . . . , k s 3) are known functions of the independent variables x, 
y ,  z and t .  

(iv) Substitute (1.3) into the original equation (1.1) and obtain a differential 
equation in k variables for the function 4. Since we have 1 s k s  3 a 'symmetry 
reduction' is achieved. 

(v) Solve the reduced equation for q.5(tl,. . . , &)  and substitute back into (1.3) to 
obtain solutions of the original equation. The obtained solutions will be invariant 
under the considered subgroup of G. 

The method described above is a standard one, going back to Lie [lo] and is 
described in various contemporary books [ 11- 141. A new aspect is that the algorithm 
for finding the Lie group of point transformations leaving a system of differential 
equations invariant has been computerised (using symbolic languages, such as MAC- 

S Y ~ A  [15] or REDUCE [ 161). Furthermore, methods have been developed for dassify- 
ing subalgebras of Lie algebras into conjugacy classes under the action of some group 
of automorphisms, in particular the group of inner automorphisms [ 17-22]. Each 
conjugacy class of subgroups of G, under the action of G itself, provides a different 
type of group invariant solution and in particular, a different reduced equation. 

We shall concentrate in this paper on subgroups with generic orbits of codimension 
k = 1 in spacetime (x, y ,  z, t ) .  For these subgroups d(5) in (1.3) depends on one 
variable only and hence satisfies an ordinary differential equation. While there is no 
guarantee that we will be able to solve this equation analytically for all reductions, in 
many cases we can. The solvable cases can again be identified algorithmically. Thus, 
the obtained ODE may have the Painlev6 property (i.e. their solutions have no sin- 
gularities, other than poles, depending on the initial conditions) [23-251. Such 
equations can be integrated in terms of known transcendents [23] or their generalisa- 
tions [26]. A MACSYMA program has been written to help identify equations with the 
PainlevC property [25]. Moreover, the ODE itself may have a non-trivial symmetry 
group, which makes it possible to reduce the order of the ODE or even reduce it to 
quadratures. 

The method of symmetry reduction has recently been applied in a systematic manner 
to relativistically invariant equations [27], in particular to the field equations of classical 
relativistic C # J ~  field theories [28,29]. This provided a large number of new exact 
solutions. The method has also been applied to the Kadomtsev-Petviashvili 
equation [30,31], the Davey-Stewartson equations [32], the three-wave equations [33] 
and other completely integrable equations [34] in more than 1 + 1 dimensions. There 
the symmetry groups of point transformations turn out to be infinite dimensional and 
to have a very specific loop-group structure. 

This paper is devoted to group theoretical preliminaries. In § 2 we establish that 
the GNLSE (1.1) is, for ala2  Z 0, invariant under the extended Galilei group 6. For 
a, = 0 (and also for a ,  f 0, a2 = O), independently of a,, it is invariant under a larger 
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group, namely the extended Galilei group, further extended by a dilation. We shall 
call this group the Galilei-similitude group and denote it Cd. In § 3 we present a 
classification of subalgebras of the corresponding Lie algebras and id In a subsequent 
paper we shall single out all classes of Lie subgroups of 6 and ed, having generic 
orbits of codimension 1. Each one of them will be used to reduce the GNLSE to an 
ODE which will then be further analysed. 

2. Symmetry group of the equation 

In order to find the symmetry group of equation (1.1) we apply an algebraic 
approach [l l] .  We look for an algebra of vector fields of the form 

(2.1) 
where T ] ,  and 4a are functions of x, y ,  z, t ,  U,, u2 and where U,, u2 are the real and 
imaginary parts of :he solution 

(2.2) 
The coefficients qi and ( i  = 1, .  . . ,4 ;  a = 1,2) in (2.1) are determined from the 
requirement that the second prolongation of V should annihilate the equation on the 
solution set of the equation. This was implemented using a MACSYMA program [ 151 
that provided a set of 41 determining equations; they are quite easy to solve. 

V =: wx + v2aV + q3& + ~ 4 d r  + 4dU, + 4dU2 

ccl(x, y ,  z, f )  = Y ,  z, t )  + iu2(x, Y ,  z, t )  u1, U, ER. 

The results can be summarised as follows. 
(1) For a, # 0, a, # 0, equation (1.1) is invariant only under the extended Galilei 

group 6 = @3). A convenient basis for its Lie algebra is provided by three translations 
pi, three rotations j i ,  three proper Galilei transformations ki,  one time translation 1 
and one change of phase generator m. We have 

t = a r  + ao(u24,, - ulau2) 

PI =a, P2 = a,. p 3  = aZ 

j ,  = za,. - ya ,  

k ,  = fa, -+~(u ,a , , ,  - u,a,,) 

j ,  = xa, - za, j ,  = ya, - xa, 

k,  = fa,. - f y ( u 2 a u ,  -U&) 

(2.3) 

k3 = fa, - f ~ (  u2aul - U&) m = u,a,, - u,a,,. 

(2) For a, =0,  a 2 # 0  or a, # 0, a 2 = 0  the invariance group is somewhat larger; 
name’ly we obtain the extended Galilei group, further extended by a dilation. We shall, 
by analogy with the relativistic case, call this group the extended Galilei-similitude 
group GS(3) = Gd (in three space and one time dimensions). A basis for its Lie algebra 
consists of the 11 operators (2.3) and the dilation generator 

d = 2tar + (xa, + y a y  + za,) - S(u,a,, + U&) + 2 ~ , t ( ~ , a , ,  - U l a U 2 )  (2.4) 

6 = { i  for a, # 0 
1 for a ,  # 0. 

The group transformation can easily be obtailied from (2.3) and (2.4), namely 

2, = e A ’ 2 [ R , , x , - x , o + u l ( t - t o ) ]  

i= eA ( t  - t o )  

J =  e-**”+ e x p ~ i [ U , ( R l k X k - x , 0 ) + ~ ~ 2 ( t - f O ) + a + 2 a o ( t - t , ) ( ~  -e*)] 

(2.5) 
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wliere we have put x, = x, x2 = y ,  x, = z. The parameters x , ~ ,  t o ,  U,, CY and A correspond 
to space translations, time translations, Galilei boosts, change of phase and dilations, 
respectively. The orthogonal matrix Rlk ( RRT = I , )  corresponds to rotations. 

$(f, F, f, i) = e-*’” CC, ( R , ~  (e-”*ZI - u,Ie-A + x I o ) ,  e-‘ I+ t o )  

This means that if +(x, y ,  z, t )  is a solution of ( l . l ) ,  then so is 

x exp i i [ u ,  (e-”l’f, - u, ie-”)  +:U’ e-‘?+ (Y +2aoI(e-‘ - 1);. (2.6) 

Discrete transformations leaving equation (1.1) invariant are: 
(i) reflections in the coordinate planes P, 

x, + -x, t + t  ++* i = 1,2 or 3 (2.7) 

T :  r + r , t + - - t , + + + * .  (2.8) 

(ii) time reversal 

Note that the parity operator is P = P,  P, P , .  
We shall denote the extended Galilei algebra with basis (2.3) by g, and the extended 

Galilei-similitude algebra with basis (2.3) and (2.4) by id. Both of these Lie algebras, 
as well as the corresponding Lie groups, are of considerable interest in physics. We 
shall present complete subalgebra classifications in both cases, going beyond the 
low-dimensional subalgebras needed in the present context. Subalgebras of the algebra 

have been studied by Sorba[35]. We go well beyond his results in identifying the 
isomorphy classes of subalgebras of i and their properties. Moreover, we present a 
classification under the group 6 and ed. The subalgebras of id are studied here for 
the first time. 

and id allow Levi decompositions [36], 
g - S 3 R, where S is semisimple and R is the radical (maximal solvable ideal). We have 

Like all finite-dimensional Lie algebras, 

i - { j l , j z , j 3 } 3 { t ,  k l ,  k2, k 3 , P 1 r P 2 , P 3 ,  m l  
i d - { j l , j z , j 3 } 3 { d ,  t,  k l ,  k z ,  k3,P1,P2,P3,  m> 

(2.9) 

i.e. S = { j ,  , j ,  , j , }  - o( 3). 
The o(3) algebra { j ,  , j , ,  j , }  constitutes the semisimple component of each of these 

algebras. The remaining infinitesimal operators span the radicals. The radical of is 
actually nilpotent and contains the Heisenberg algebra { k ,  , k , ,  k 3 ,  pI , p 2 ,  p ,  , m }  - h(3). 

We shall, in our subalgebra classification, make use of different decompositions, 
namely 

In (2.10) n is an Abelian ideal and f is a factor algebra f-g/n which is itself a Lie 
algebra, isomorphic to the Euclidean Lie algebra e(3). 

The commutation relations for the two algebras g and id are given in table 1. 
The extended Galilei group 6 plays a fundamental role in non-relativistic quantum 

mechanics. It has been extensively studied, e.g., by Levy-Leblond [37] and Voisin [38]. 
A large class of equations is invariant under 6, in particular any non-linear Schrodinger 
equation of the form 

a* 
a t  

i -+A+ = F()+l)+. 
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Table 1. Commutation relations for gd(3)  and g(3 ) .  

d 0 0 0 0 kl kz k3 -p i  - p z  -p3 - 2 t  0 
0 

j 2  0 - j 3  0 j l  - k 3  0 kl -P3 0 PI 0 0 
j l  0 

j 3  0 j 2  -jl 0 k2 -k1 0 P2 -PI 0 0 0 
k ,  - k l  0 k3 -k2 0 0 0 f m  0 0 -PI 0 
k2 - k ,  - k ,  0 kl 0 0 0 0 f m  0 - p 2  o 
k ,  - k ,  k2 - k l  0 0 0 0 0 0 t m  - p ,  o 

P3 -P2 -fm 0 0 0 0 0 0 0  
P2 P2 -P3 0 PI 0 -+m 0 0 0 0 0 0  
PI PI 0 

P3 P3 P2 -PI 0 0 0 -fm o 0 0 0 0 
PI P2 P3 0 0 0 0 0  

0 0 0  

0 . i3 - J 2  0 k3 - k z  0 P 3  - P 2  0 

t 21 0 0 0 
m 0 0 0 0 0 0 0 0 0 

Similarly, the group ed is pertinent in the study of scaling phenomena in any non- 
relativistic quantum theory. 

In the classical limit, h + 0, the extended Galilei algebra g and the extended 
Galilei-similitude algebra id contract to a direct sum of the corresponding non-extended 
algebras g and gd with a one-dimensional algebra { m } .  Their subalgebras and the 
corresponding subgroups of the non-extended groups G and Gd will be of use, e.g., 
in the study of classical non-relativistic integrable systems. A classification of the 
subalgebras of g and gd is presented elsewhere [39]. 

3. The subalgebra classification 

We shall classify the subalgebras of the extended Galilei algebra g into conjugacy 
classes under the action of the connected component of the extended Galilei group 
Go= G,(3), under the group 6= 6 ( 3 )  that includes parity P and time reversal T and 
also under the connected component of the extended Galilei-similitude group 6," and 
under e d = G S ( 3 ) ,  including P and T The subalgebras of the extended Galilei- 
similitude algebra Ed are classified into conjugacy classes under the action of GS,(3) 
and GS(3). 

The method to be used for g was developed [ 171 in connection with a classification 
of subalgebras of the Poincark algebra p(3 , l ) .  The one for id was first presented in 
connection with the relativistic similitude algebra sim(3, 1) [18]. They have been 
applied to find all closed connected subgroups of such fundamental groups of physics 
as the PoincarC [ 171 and similitude groups [ 181, the two de Sitter groups [ 19,201, the 
optical group [22] and the Schrodinger group in 1 + 1 and 2 + 1 dimensions [21,22]. 

3.1. Subalgebras of the extended Galilei algebra g' 

We make use of the semidirect sum decomposition (2.10). The classification procedure 
can be formulated as an algorithm, consisting of several steps. Consider a Lie algebra 

1=f+3n  (n = ideal in 1) .  
(1) Classify all subalgebras of the algebra f into conjugacy classes under the 

action of the group F = expf. Choose a representative J ;  of each conjugacy class of 
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subalgebras in such a manner that the normaliser norf f ;  of f ;  in f is also in the list. 
We recall here the definition of the normaliser of a subalgebra in a Lie algebra: 

n o r r f ; = { x ~ f / [ . ~ , f ; I ~ f ; } .  (3.1) 
Obviously we have 

J ;  E nor,f; E f. 

The trivial subalgebras fo = f and f, = (0) must be included in the list. 
In the case under consideration we have f - e(3). The subalgebras of the Euclidean 

algebra e(3) have already been classified [ 191 and we reproduce the results in table 2 .  
For future use we give the normaliser of each subalgebra J ;  both in f and in (see 
column 5 ) .  

Table 2. Representatives of conjugacy classes of subalgebras of the Euclidean algebra 
f-e(3) .  

Range of parameters 

6 
4 
3 
3 
3 
3 
2 
2 
1 
1 
1 
0 

Every subalgebra of f is conjugated to precisely one algebra in table 2. Which 
classification group is used only influences the range of parameters introduced in 
column 3 (see column 6 ) .  

( 2 )  For each subalgebra 1; c f find all invariant subspaces nr,, E n ( [ A ,  n,,,] E n,,,) 
that are also subalgebras of n. Since in the case under consideration the ideal n is 
Abelian, every subspace of n is a subalgebra. Classify the invariant subspaces for each 
J ;  into conjugacy classes under the action of Nor, f ; ,  where 

Nor, J;  = {g E GIgJ;g-'Ef;} (3.2) 
and G is the classifying group under consideration. Choose a representative n , ,  of 
each conjugacy class. A list of representatives of all G conjugacy classes of splitting 
subalgebras of 1 is obtained by taking the set of all algebras that are the algebraic sums 
of the spaces f; and n,,, : 

f ;  4- n , ,  vi, va. (3.3) 
(3) Find all non-splitting subalgebras of 1. These are subalgebras containing, in 

any basis, at least one basis element not contained in the ideal n, nor in the factor 
algebra f (not even after conjugation by the classifying group). To obtain all non- 
splitting subalgebras of a Lie algebra 1 = f 3  n we choose a basis for n, say { X ,  , . . . , X,} .  
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We then run through the list of all splitting subalgebras {f; + r ~ ~ , ~ } .  For each of them 
we have a basis 

(3.4) 
All non-splitting subalgebras of 1, related to the splitting subalgebra (3.4), will have 
bases in the form 

f; ={E, 9 . .  . ,  Br) n1,u ={XI, ’ .  . , XFJ. 

m 

{B,+E c, ,y ,x ,}  a = l ,  . . . ,  r i =  1, .  . . , p  

y E n l  n1,o 

,=1 

(3.5) 
j =  1 , .  . . , m m + p  =dim n. 

The constants C,, E R are subject to the condition that (3 .5)  must be the basis of a Lie 
algebra. The classification of all non-splitting subalgebras amounts to a classification 
of all the algebras (3 .5)  under the action of the group NorG(f; 4 nl ,u )  %, N and to the 
choice of a representative of each conjugacy class (where N = exp n ) .  

In cohomological terms, the condition that the elements in (3 .5)  form the basis of 
a Lie algebra means that the coefficients C,, form 1-cocycles. Those that can be 
eliminated by transformations in the invariant subgroup N form 1-coboundaries. If 
all I-cocycles are 1-coboundaries then the subalgebra is a splitting one. 

Combining together the representative lists of splitting and non-splitting subalgebras 
of 1, we obtain a normalised representative list of all subalgebras of 1 (the normaliser 
of every algebra in the list is also in the list). 

The results of the classification of the subalgebras of the extended Galilei algebra 
g are given in table 3. In column 2 we give some information on the isomorphy class 
of the subalgebra. For subalgebras of dimensions d S 5 and nilpotent algebras of 
dimension d = 6 a complete classification of isomorphy classes exists [40-441. For 
these algebras we present the isomorphy class in column 2, following the notations of 
[44]. For d = 7 , .  . . , 11 and d = 6 non-nilpotent, we give whatever information is 
available in column 2 .  In particular, if a subalgebra is decomposable, then its indecom- 
posable components are identified. Subalgebras containing the three rotations j = 
{ j , ,  j 2 , j , }  have Levi decompositions in which the semisimple subalgebra is 0(3), and 
all other basis elements span a nilpotent ideal (the radical, which is also the nilradical). 
Algebras containing one element involving a rotation ( j , ,  j ,  + at, j ,  + ak,  , j ,  + up, ,  
j ,  + am, or j ,  + ak3 + b t )  are solvable, but not nilpotent. The bases are presented in 
column 3 in such a way that the nilradical ( N R ) ,  i.e. the maximal nilpotent ideal, is 
obtained by simply omitting the basis element involving j,. Some information on the 
nilradicals of the solvable subalgebras is also given in column 2 .  The basis elements 
to the right of the semicolon in column 3 span the derived algebra of the subalgebra. 

The normaliser of each algebra in the extended Galilei algebra g, and extended 
Galilei-similitude algebra id, are presented in columns 4 and 5, respectively. The 
subalgebras are denoted g l , k ,  where i denotes the dimension and k labels different 
subalgebra classes of the same dimension. Many subalgebras depend on parameters 
a, b, . . .E R. Their range is indic$ed in column-6, for conjugacy considered under the 
proper extended Galilei group Go, the group G including parity P and time reversal 
T, the proper extended Galilei-similitude group 6: and also the group &d, including 
P and T. 

3.2. Subalgebras of the extended Galilei-similitude algebra g’” 

We apply a somewhat modified version of the classification procedure used above [ 181. 
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Table 3. Representatives of conjugacy classes of subalgebras o f  the extended Galilei algebra i = i ( 3 ) .  
The classification group is specified in column 6 dnd only influences the range of parameters (if any). 
These are also representatives of or kd conjugac) classes of subalgebras of id not involving dilations. 
For 1: and il see table 4. 

Isomorphism class 
Number and comments Basis 
~. 

i 1 1 . 1  

510.1 

i 9 . l  

i S . 1  

i 8 . 2  

i s . ,  
i 8 . 4  

i 8 . 5  

i 8 . 7  

i 7 . l  

i 7 . 2  

i 7 . 4  

i 7 . S  

i 7 . 7  

i 7 . 8  

i 6 . 6  

g8.h 

g7,3 

i 7 . 6  

g7.9 

g7.10 

i 7 . 1 1  

g7,12 

i 7 . 1 1  

i 7 . 1 4  

g-,15 

i 7 . 1 6  

i 7 , I i  

i 7 , 1 8  

i 6 . 1  

i 6 . 2  

26.3 

i 6 . 4  

g 6 . 5  

i 6 . 6  

5 6 , .  

i 6 .8  

g 6 . 9  

26.10 

i 6 . 1 1  

g 6 . 1 2  

g 6 . 1 3  

i 6 . 1 4  

i 6 . 1 5  

Range o f  parameters 

norp nori* Z;,, 6 6: 

- h , 7  

i 6 J 8 @ U l 9  1 )  
nilpotent, h(3) 

L(6, 14; I )  
L(6, 14; I )  
L(6, 14; 1 )  

Ll6, 14; 1 )  
SOIV, N R  = L(5,4)  

i 7 . 1  

H7.1 

H7.1 

5 9 . 1  

i 8 . 3  

i 9 .  I 

i 8 . 7  

i 7 . 1 "  

i s , -  
b , I l  

H6.2 

g 6 . 5  

gs.2 

-'J 
~ 1 0 . 2  

a > o a : > O  

a = i l  a = l  

a = l  a = l  
a = l  a = l  
b # O  b > O  

a = l  a = l  

a = i l  a = r l  

a = l  a = l  

a = l  a = l  
a = = l  o = l  

a = i l  a = l  
a = l  a = l  
b f O  b > O  

a = l  a = l  
a = * l  a = l  
a = l  a = l  
b f O  b t ' O  

a = l  a = l  
a = l  a = l  

a = l  o = l  

o = l  a = l  

a = l  a = l  
a = I  a = l  
b > O  b>O 
a = l  a = l  
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Table 3. (continued) 

Isomorphism class 
Number and comments Basis 

~ 

d6.16 

i 6 . 1 7  

i 6 . 1 8  

i L . 2 0  

i 6 . 1 9  

i 6 . 2 1  

i 6 . 2 2  

g6.23 

86.24 

i s , ,  

i5.3 

i 5 , 4  

i 5 . J  

i 5 . 7  

i s . 8  

15.9 

i S . 1 0  

i s . 1 1  

25.12 

i S . 1 3  

i s . 1 4  

& I 5  

i 5 . 1 6  

i s . i n  

g5.2 

P5.6 

i 5 . 1 7  

i 5 . 1 9  

i5.20 

i 5 . 2 1  

g 5 . 2 2  

i 5 . 2 3  

i 5 . 2 4  

g5.25 

i 5 . 2 6  

i 5 . 2 7  

gs,za 

i S . 2 9  

i 5 . m  

i5.32 

i 5 . 3 3  

i 5 . 3 4  

i 5 . 3 1  

Range of parameters 

a = * l  a = l  
a = * l  a = l  
a = ]  a = l  
a - = I  a = l  
b # O  b # O  
a = I  a = ]  
h # O  h > O  
h : = 1  b = l  
a : = * I  a = l  

a = l  a = l  

a - = i l  a = l  

a - = 1  a = l  

a - 1  a = l  
b E R  b z O  
c - . o  c > o  
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Table 3. (continued) 

Range of parameters 
Isomorphism class 

Number and comments Basis norp norpa 6o ti 6: tid 

i 5 . 3 s  

i 5 . 3 6  

i s . 3 1  

i 5 . 3 8  

i s . 3 9  

i 5 . 4 1  

i 5 . 4 2  

i 4 . 1  

i 4 . 3  

i 4 . 4  

i 4 . 5  

i 4 . 6  

i 4 . 7  

i 4 . 8  

i 4 . 9  

i& 

g4.11 

g 5 . 4 0  

i 4 . 2  

g4,IO 

i 4 . 1 2  

&,I3 

g4.14 

i 4 . 1 5  

i 4 . 1 6  

i 4 . 1 7  

i 4 . 1 8  

i 4 . 1 9  

i 4 . 2 0  

64.21 

94.22 

d4.23 

i 4 . 2 4  

i: 
i4.27 

i 4  2x. 

i 4 . 2 5  

i 4 . 2 6  

L(5, 5) 

L(5, 13; 0) 
L(5, 13; 0) 

L(5,13; 0) 

L(5, 13; 0) 

L(5 ,13 ;  0) 
L(5 -35)  

L(5.35)  

a = l  
b r O  
C # O  

a = * l  
a = i l  
b r O  
a = * l  
b s R  
a = i l  
b > O  
a = i l  
o = l  
b i O  
C € R  

o = l  
b f . 0  

a = i l  

a = l  

a = i l  

a = l  
b r O  
c > o  
a = l  
a = l  
b z O  
a = l  
b r O  
a = + l  
b > O  
a = l  
a = l  
b > O  
C € R  

a = l  
b > O  

a = * l  

a = l  

a = l  

a>O 
b r O  
C € W  

O > O  

a>O 
b > O  
a > O  
b > O  
C € R  

a > O  
b > O  
c , d ~ R  
a > O  
a>O 
b # O  
a>O 
b > O  
a > O  
a>O 

a>O 
a>O 

0 = l  
b r O  
C € R  

a>O 
a > O  
b = ; t l  
o > O  
b = l  
C € R  

a>O 
b = l  
c , d ~ R  
a = l  
a = l  
b # O  
a = l  
b > O  
a = l  
a>O 

4 = l  
a = l  

o = l  
b r O  
C € R  

a>O 
a>O 
b = l  
a > O  
b = l  
C € R  
a>O 
b = l  
c , d s R  
a = l  
a = l  
b # O  
o = l  
b > O  
a = l  
a>O 

a = l  
o = l  
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Table 3. (continued) 

lsomorphism class 
Number and comments Basis 

Range of parameters 

i4.29 

i4 .30  

i4 .31  

24.32 

i4 ,33  

i4 .34 

i4 .35 

i4 .36 

i4 .37  

i4 .38 

i4 .39  

i4 .40  

g4.41 

84.42 

i4 .43 

i 4 . 4 5  

i4 .47  

i 4 . 4 8  

i4 .49  

g4.44 

i4 .46  

i 4 . 5 0  

f4 .51  

i 4 . 5 2  

i 4 . 5 3  

i4 .54  

i 4 . 5 5  

g3.l 

i 3 . 2  

i 3 . 3  

i 3 . 4  

i 3 . 5  

i 3 .7  

i n 3  
i 3 .9  

i 3 . 1  I 

i 3 . 6  

f3.10 

i3 .12  

i3 .13  

i3 .14  

a # O  a > O  
bcW b e R  
a>O a > O  
b # O  b > O  
a>O a > O  
a # O  a>O 

a r O  a 2 0  
a s 0  a 2 0  
b # O  b > O  
C€R C € R  
a 3 0  a 2 0  
C # O  c # O  
a # O  a > O  
a r O  a 2 0  
a # O  a>O 
b > O  b z O  
a r O  a>O 
a > O  a > O  
b E R  b c R  
a>O a>O 
aPO a 8 0  
a>O a>O 
a > O  a>O 
b # O  b # O  

a # O  
a>O 
b > O  
C € R  
a>O 

a > O  
b c R  
a # O  
a > O  
b # O  
C € R  
a 1 0  
C € R  

a # O  
a>O 
b P O  
C € R  

a s 0  
o r 0  
b # O  
a > O  

a # O  
a>O 
b a O  
C € R  
a>O 

a>O 
b r O  
a>O 
a>O 
b > O  
C € R  
a > O  
c r o  

a>O 
a>O 
b r O  
C € R  

a P 0  
a s 0  
b#O 
a > O  

a = x l  
b e R  
a = l  
b # O  
a = l  
a = * l  

a 2 0  
a P O  
b = * l  
C€R 
a 2 0  
C # O  

a = z l  
a s 0  
a = * l  
b P O  
a > O  
a = l  
b c R  
aPO 
a 2 0  
a = l  
a > O  
b = * l  

a = z l  
a = l  
b > O  
C € R  

a = l  

a = l  
b € R  

a = * l  
a = l  
b # O  
C € R  
a = l  
C € R  

a = * l  
a = l  
b P O  
C € R  

a 3 0  
a 3 0  
b = * l  
a = l  

a = l  
b c R  
a = l  
b > O  
a = l  
a = l  

a r O  
a r O  
b = l  
e s R  
a > O  
C Z O  

a = l  
a P O  
a = l  
b > O  
a 2 0  
a = l  
b e R  
a 2 0  
a r O  
a = l  
a > O  
b = * l  

a = * l  
a = l  
b P O  
C € R  
a = l  

a = l  
brO 
a = l  
a = l  
b > 0  
C € R  
a = l  
c r o  

a = l  
a = l  
b r O  
C € R  

a r O  
o r 0  
b = * l  
a = l  

a # O  a i 0  a = * l  a = * l  
a > O  a > O  a = l  a = l  

a>O a>O a = l  a = l  
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Table 3. (continued] 

Range of parameters 
Isomorphism class 

Number and comments Basis 

i 3 . 1 5  

i 3 . 1 :  

i 3 . 1 8  

i 3 . 2 0  

i 3 . 2 1  

2 3 . 1 6  

i 3 . 1 9  

g3.22  

i 3 . 2 3  

i 3 . 2 4  

2 3 . 2 7  

2 3 . 2 s  

i 3 . 2 Y  

i 3 , 3 n  

i 3 . 3 2  

i 3 . 3 3  

i 3 . 3 5  

i 3 . 3 7  

i 3 . 3 8  

i 3 . 3 9  

i 3 . 4 0  

g3.25 

g 3 , 2 6  

i 3 , 3 1  

g3.34 

i 3 . 3 6  

i 3 . 4 1  

i 3 . 4 2  

i 3 . 4 3  

i 3 . M  

i 3 . 4 5  

i 3 . 4 7  

i 3 . 4 8  

i 2 . 4 9  

i 3 . 5 1  

i 3 . 5 2  

i*. I 

i 2 . 2  

i 2 . 3  

h . 4  

g 3 . 4 6  

f 3 . 5 0  

a > O  a>O a = l  a = l  

a > O  a>O a = l  a = l  

o f 0  a > O  a = * l  a = l  

a # O  a > O  a = * l  a = l  
a # O  a > O  a = r l  a = l  

a i 0  a > O  a = r l  a = l  
a i 0  a > O  a = r l  a = l  

a 3 0  
b>O 
C € R  
a > O  
b, c s R  
d>O 
a > O  
b # O  
a > O  
a # O  
b 3 0  

a s 0  
b>O 
C € R  

a > O  
b,cER 
d > O  
a>O 
b#O 
a 1 0  
a > O  
b s O  

a P O  
b = l  
C € R  
a>O 
b , c s R  
d = l  
a = l  
b f O  
a = l  
a = = l  
b s 0  

a s 0  
b = l  
C € R  

a > O  
b,cER 
d = l  
a = l  
b i O  
a = l  
a = l  
b a O  

a > U  a > O  a = l  a = l  
a>O a > O  a > O  a > O  
a>O a > O  a = l  a = l  

a>O a > O  a = l  a = l  

a>O a > O  a = l  a = l  
a > O  a>O a = l  a = l  
b # O  b > O  b # O  b>O 
a i 0  a > O  a = = l  a = l  
a i 0  a > O  a = r l  a = l  
a + O  a + O  a = # l  a = * l  
b#O b>O b t o  b>O 

b>O b>O b>O b>O 

b>O b>O b>O b>O 

a i 0  a>O a = * l  a = l  
a t 0  a>O a = % l  a = l  

a i 0  a f O  a = * l  a = * l  
b s O  b a O  b s O  b,O 
a > O  a > O  a > O  a > O  
a # O  a > O  a = * l  a = l  
a > O  a > O  a = l  a = l  

a > O  a > O  a>O a > O  
b + O  b>O b i O  b>O 

a 3 0  a s 0  a 2 0  
a + O  a # O  a = = l  
b s O  b P O  b a O  
C € R  C P O  C E R  

a 2 0  a P O  a s 0  
b + O  b>O b = r l  
a 2 0  a 2 0  a s 0  

a P O  
a = * l  
b r a  
c 3 0  
l l P 0  
b = l  
a*O 
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Table 3. (continued) 

Isomorphism class 
Number and comments Basis 

Range of parameters 

nori norpa eo 6 e;: ed 

i 2 . 5  

i 2 . 7  

&,a 

i 2 . 9  

i 2 . 1 0  

i 2 . 6  

&.I1 

i 2 . 1 2  

i 2 . 1 3  

i 2 . 1 4  

i 2 . 1 5  

i 2 . 1 6  

C2.17 

g2.1, 

i 2 . 1 9  

i 2 . 2 2  

i 2 . 2 3  

i 2 . 2 4  

i 2 . 2 5  

g2.20 

g2.21 

2 2 . 2 6  

g 2 . 2 7  

i 1 . l  

i 1 . 2  

i l . 3  

i 1 . 4  

g1.5 
i 1 . b  

d1.7 

i 1 . a  

i 1 . 9  

i l . 1 1  

i l . 1 2  

g1.10 

a > O  a > O  a = l  a = l  
a>O a > O  a'>O a>O 
b c R  h c W  b=O,*l  b=O.*l  
a > o  a > O  a = l  a = l  

a > O  a > O  a = l  a = l  

a > O  a > O  a - = I  a = l  
b s 0  b a g  b s O  b z O  
C € R  c r o  C 6 i R  c r o  
a # O  a > O  a = r l  a = l  
a > O  a > O  a = l  a = l  
b e R  b c R  b c R  b ~ l W  
a s 0  o r 0  a r O  a s 0  
a # O  a f O  a = = l  a = r l  

a > O  a>O a = l  a = l  
b e 0  b>O b t O  b>O 
a > O  a > O  a = l  a = l  

a # O  a > O  a = x l  a = l  
a # O  a > O  a = x l  a = l  
a>O a>O a = l  a = l  

a # O  a > O  a = * ]  a = l  

a s 0  a s 0  a 2 0  a s 0  
a > O  a > O  a = l  a = l  
b f O  b>O b z 0  b z O  
a > O  a > O  a = l  a = l  
b c R  b e R  b c R  b c R  
a # O  a > O  a = z l  a = l  
a # O  a > O  a = r l  a = l  

a # O  a # O  a = * l  a = * l  

a > O  a > O  a = l  a = ]  

a # 0  a > O  a = * ]  a = l  

The similitude algebra is viewed as the semidirect sum 

id = { d }  %, i (3.6) 
i.e. the factor algebra f - { d }  is one dimensional and the ideal n - is eleven dimensional 
and, of course, non-Abelian (and not solvable). The subalgebras o f f  are hencef, - { d }  
and fi - {0}. The classification is performed under the connected component of the 
extended Galilei-similitude group 68 and under the group Gd, including time reversal 
and parity. 

The following three types of subalgebras of id exist. 
(1) Subalgebras obtained from the subalgebraf2- (0) of the factor algebra. These 

A list of representatives of 6: and are subalgebras of the extended Galilei algebra 



1 SO6 L Gagnon and P Winternitz 

Table 4. Classification of-subalgebras of-the form k , + a , p , + a , p , + a , p , ,  k , - a , p ,  + h l p 2 +  b,p, ,  
k , - a , p ,  - b , p , ,  m under Go, G, G i  and Gd. No indication on the range of a parameter means f O .  
Indication in brackets ( 1 stands for classification under 6 and cd, 

Range of parameters 

Under 6, and 6 

Number class aI a2 a3 b ,  b, and Gd norp nor: 
Isomorphism Under 6: 

> > 
o >  > 

o z  > 
o o >  > 

> o  > 
0 5, 0 > 

0 0  > 
0 0 0  > 

> o >  
0 5. o >  

o >  o >  
o o >  o >  

> o  o >  
o > o  o >  

0 0  o >  
> >  0 

o > >  0 
0 1  0 

o o >  0 
> 0 + a ,  0 
> o  a1 0 

o > o  0 
0 0 # a 1  0 

( > I  0 0 a1 0 
> >  0 0  

0 3. > 0 0  
o >  0 0  

0 5. 0 0 0  
( > I  0 0 0 0  
0 0 0  0 0  

h, = 1 
h2 = 1 
b,  = I 
h, = 1 
h, = 1 
h,= 1 
h,= 1 
b, = 1 
b,  = 1 
b2 = 1 
b, = 1 
h, = 1 
b 2 =  1 
b, = 1 
b, = 1 
a,  = 1 
a , = l  
a , = 1  
a , = l  
a , = l  
a 2 = l  
a , = l  
0 , = * l  
a , = * l  
0 )  = 1 
a3 = I 
a , = l  
a , = l  
a , = * 1  

Gd conjugacy classes of such algebras coincides with the list given in table 3, where 
the range of parameters is given in the last two subcolumns of column 6 .  We shall 
denote these subalgebras g':k = g l , k ,  with & given in table 3. 

(2) Subalgebras of id obtained from f, = {d}, which are splitting extensions of 
subalgebras of g. They are obtained by adding the element d to a subalgebra g, ,k  of 
i (classified under G;, or Gd), which is an invariant subspace of d. We thus obtain 
algebras of the form d 4 where g , , k  is one of the subalgebras listed in table 3. In 
these bases given in table 3 the d-invariant subalgebras g l , k  are those which either 
involve no parameters (when classified under Go), or contain parameters relating the 
translations p ,  only. Thus, e.g., algebra i4.,4 is allowed, but g4,,5 is forbidden, as are 
all subalgebras with basis elements of the type j ,  + ak,  + bp,, k ,  + at, t + am, k, + bp,, etc. 

(3) Subalgebras of id obtained from fi = {d}, that are non-splitting extensions of 
subalgebras of E. They are obtained in the following manner, 

(i)  Take a subalgebra $j , ,k  from table 3 that is an invariant subspace of d (i.e. the 
same subalgebras that were used above in case 2).  

(ii) Add to g r , k  a basis element of the form 

d + a,j ,  + b,k, + c,p, + et + f m  = d + n 01, b , ,  c,, e , f  E (3.7) 
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such that 

n E [norg gi ,k l /g i .k .  (3.8) 

The condition (3.8) ensures that ( d  + n )  4 g , , k  forms a Lie algebra and that d + n cannot 
be simplified by linear combinations with elements of i l , k .  

(iii) Classify the elements (3.7) into conjugacy classes under the action of the 
normaliser of i 1 . k  in the group e! (or ed). Choose a representative of each conjugacy 
class for which at least one of the coefficients a,,  b,, . . . ,f is non-zero (if all coefficients 
are zero, up to conjugacy, we re-obtain a splitting subalgebra). The results of this 
procedure can be stated quite simply: the basis element (3.7) must actually have the form 

2 = d + aj3 + bm (a ,  b )  + (0,O) a, b E R .  (3.9) 

Indeed, terms of the form b,k, + c,p,  + et can be removed by transformations in the Lie 
group generated by {k, p ,  m}. Terms of the form ad, can be rotated into aj,.  

In table 5 we give a list of representatives of conjugacy classes of subalgebras i$ 
of the extended Galilei-similitude algebra id, that involve a dilation. A complete list 
of representatives of all conjugacy classes of subalgebras of id is obtained by merging 
tables 3 and 5 together. In the tables, e(3) denotes the Euclidean Lie algebra and 
sim(3) the similitude algebra of Euclidean 3-space (sim(3) - { d ,  j ,  p } ) .  

Table 5. Representative of 6; and cd conjugacy classes of subalgebras of the extended Galilei-similitude 
algebra id involving a dilation. 

Isomorphism class 
Number and comments Basis 

Range of parameters 

norg* 6; 6d 



1508 L Gagnon and P Winternitz 

Table 5. (cont inued)  

Number 
lsomorphism class 
and  comments Basis 

Range of parameters 

nor,.i c: ed 

L(5,48; - 1 , O )  

a > O  

acIW 
aclW 

a > O  

a > O  

a a O  
h + O  
a > O  
a > O  
a > O  
a > O  

a e R  

a > O  
a > O  
a > O  
a > O  
a > O  

aGR 
a > O  
b e R  
a 3 0  
a s 0  
a :> 0 

a 2 0  
b ci R 
a 3 0  
beua 
a 3 0  
bc-IW 

a > O  

a s 0  
o r 0  

a > O  

a > O  

a 3 0  
b>O 
a>O 
a > O  
a > O  
a > O  

a 2 0  

a > O  
a > O  
a > O  
a > O  
a > O  

a 2 0  
a > O  
b*O 
a P 0  
a 3 0  
a > O  

a 2 0  
b P O  
a 2 0  
b P O  
a 2 0  
b P O  
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Table 5. (cont inued)  

Isomorphism class 
and  comments Basis norg'! 

L(5,48,  - 1 ; O l  

L(5,48;  2; 01 

l ~ i 2 , 1 ) 0 2 L ( l ,  I 1  

L ( 2 , 1 ) @ 2 L ( I , l i  
L(2, 1 J O 2 L i 1 ,  1 )  

L(3 ,2 ;  1 ) 0 L ( l , l J  
L (3 ,2 ;  l i @ L ( l , l J  
L(3,2;  - l ) @ L i l ,  l i  
Li3,2;  1 / 2 ) @ L ( I ,  1 )  
L(3 ,2 ;  l / 2 J @ L ( l ,  1 )  

L(3 ,4 ;  I / a i O L i l ,  1 )  
L(3 ,4 ;  l / a ) O L ( I ,  1 )  
L ( 3 , 6 ) 0 L ( l ,  1) 
L(4,2;  I ;  I )  
L(4.2; I ;  1) 
L(4 ,2 ;  1; - 1 )  
L(4,2;  1; - 1  i 
L(4.2; 112; 1/21 
L(4,5;  ] / a ;  l / a j  

L (4 ,5 ;  I l a ;  I / a )  

L(4 ,S ;  l / a ;  - ] / a )  

L(4 ,5 ;  ] / a ;  - l / a i  

L (4 ,5 ;  2 / 0 ;  ] / a )  

Li4, 13)  

L(2, I ) @ L ( I ,  1 ,  

Li2, 1 ) 0 L ( 1 ,  I i  
L(2, H O L ( 1 ,  1) 
Liz, I ) O L i l ,  1 )  
Li3,2:  1 i  
Li3.2; 1)  
L(3 ,2 ;  -11 
L(3,2:  1/21 

L(3 ,2 ;  112) 
L(3,4;  1/01 

L(3 ,4 ;  I / a l  

Range of parameters 

ed 
u s 0  
b r O  
a 3 0  
b z O  

a 2 0  
a 2 0  
b a g  
a>O 
a > O  
a r O  
a s 0  
a 3 0  
a 2 0  
a r 0  
a a O  
a>O 
b s O  
a > O  
b r O  
a>O 
b a O  
a>O 
6 3 0  
a > O  
b a O  

a > O  
a > O  
a 2 0  
b r O  
a 2 0  
b a O  

a s 0  
b a O  
a 2 0  
b r O  
o r 0  
b r O  
a s 0  
a 2 0  
a 2 0  
o r 0  
o a o  
a 3 0  
a > O  
b r 0  
o r 0  
a > O  
b r o  
a 1 0  
b a O  
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Table 5. (continued) 

Range of parameters 
lsomorphism class 

Number and comments Basis norgd 

a 9 0  a 2 0  
bcW b a 0  
a > O  a>O 

a > O  a 1 0  
b E R  b s O  
a c R  0 3 0  
a z o  a > O  
b c R  b a O  
a c R  a P O  

a > O  a>O 
b c R  b r O  
aciW a P 0  

a z o  a>O 
b c R  b P O  
a c W  a s 0  

4. Conclusions 

The results of this article can be summarised as follows. Any subalgebra of the extended 
Galilei algebra 3 3 )  is conjugated under the group of inner automorphisms to precisely 
one subalgebra in the list of table 3. Any subalgebra of the extended Galilei-similitude 
algebra is conjugated to precisely one subalgebra in the lists of table 3, or table 5. 

The immediate application of this subgroup classification will be to obtain group 
invariant solutions of the GNLSE (1.1). A different application concerns the question 
of symmetry breaking for equation (1.1). Thus, for each subgroup, we can find the 
most general second-order equation, invariant under this subgroup. In general, there 
will be equations that describe more general interactions than (1.1) but reduce to (1.1) 
when these interaction terms are set equal to zero. 
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